Read 5.1

Finish Chapter 4 today

WIMQ

BRITISH

If
$$\omega(165)$$
 $g=32ft/s^2$

If $\omega(N)$ $g=9.8m/s^2$

SI

experiences a greater force from the other one due to the collision? A ping-pong ball collides with a bowling ball. Which of

- A) The ping-pong ball
- B) The bowling ball
- C) They experience the same force
- The force on each depends on its velocity
- The force on each depends on its mass

following four forces that arise in this situation. A book is resting on the surface of a table. Consider the

- (1) the force of the earth pulling on the book
- (2) the force of the table pushing on the book
- (3) the force of the book pushing on the table
- (4) the force of the book pulling on the earth

which obey Newton's third law? Which two forces form an "action-reaction" pair

- A) 1 and 2
- B) 1 and 3

- C) 1 and 4
- D) 2 and 4

E) 3 and 4

A horse pulls a cart along a flat level road. Consider the following four forces that arise in this situation

- (1) The force of the horse pulling on the cart.
- (2) The force of the cart pulling on the horse.
- (3) The force of the horse pushing on the road.
- (4) The force of the road pushing on the horse

which obey Newton's third law. Which two forces form an "action-reaction" pair

A) (1) and (4)

B) (1) and (3)

C) (2) and (4)

E) (2) and (3)

D) (3) and (4)

36 N. The astronaut has a mass of 92 pushes on a spaceship with a force of An astronaut who is walking in space

11000 kg. Which statement is true?

kg and the spaceship has a mass of

- B) No net force will be exerted on the astronaut or on the A) The astronaut will accelerate, but not the spaceship. spaceship.
- C) A force will be exerted on the astronaut but not on the spaceship.
- D) The astronaut and the spaceship will have the same magnitude of acceleration
- E) None of the above.

a spaceship with a force of 36 N. The astronaut has a mass of 92 kg and the spaceship has a mass of 11000 kg. Problem: An astronaut who is walking in space pushes on

What happens'?

opposing the motion. How does the tension between the the 2nd car and the third car? engine and the 2nd car compare with the tension between A train is accelerating to the right. There is no friction

- A) It is less.
- B) It is the same.
- C) It is greater.
- D) More information is needed

Problem: A train is accelerating at a rate of 5.0 m/s². tension between each of the cars? There is no friction opposing the motion. What is the

Problem: A 4 kg block and a 2 kg block can move on a 8 N acts on the 4 kg block and a frictional force of 4 N in the positive * direction as shown. A frictional force of horizontal surface. The blocks are pushed by a 24 N force

A) What is the net force acting on the two blocks?

acts on the 2 kg block.

- B) Determine the acceleration of the blocks
- C) What is the force of the 2 kg block pushing on the 4 kg block?

Tet= アリードーガン ペスグーのグースグ ニ イスグ ·+(242)22057 これなら