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Solutions to Homework Set #10
Phys2414 – Fall 2005

Note: The numbers in the boxes correspond to those that are generated by WebAssign. The numbers
on your individual assignment will vary. Any calculated quantities that involve these variable numbers will
be boxed as well.

1. GRR1 8.P.007. A bicycle has wheels of radius 0.23 m. Each wheel has a rotational inertia
of 0.095 kg ·m2 about its axle. The total mass of the bicycle including the wheels and the
rider is 72 kg. When coasting at constant speed, what fraction of the total kinetic energy of
the bicycle (including rider) is the rotational kinetic energy of the wheels?

The total kinetic energy of this system is the sum of the kinetic energies of the system. The bicycle is moving
so it has translational kinetic energy equal to KEtrans = 1

2mv2. The wheels are turning so they both have
rotational kinetic energy equal to KEwheel = 1

2Iω2. The total rotational energy is then KErot = 2 ·KEwheel.
The fraction of the total energy that is the rotational energy is then given by

f =
KErot

KEtot

f =
2 · 1

2Iω2

1
2mv2 + 2 · 1

2Iω2

f =
Iω2

1
2mv2 + Iω2

Since the bicycle is moving at a speed of v, the angular velocity of the wheels must be equal to ω = v
r .

Substituting this into the fraction above gives

f =
I(v/r)2

1
2mv2 + I(v/r)2

f =
(I/r2)v2

1
2mv2 + (I/r2)v2

f =
(I/r2)v2

v2
(

1
2m + I/r2

)
f =

I/r2(
1
2m + I/r2

)
The speed cancels out and we find

f =
0.095 kg ·m2/( 0.23 m)2(

1
2 72 kg + 0.095 kg ·m2/( 0.23 m)2

)
f = 0.0475

2. GRR1 8.P.020. The radius of a wheel is 0.470 m. A rope is wound around the outer rim
of the wheel. The rope is pulled with a force of magnitude 3.10 N, unwinding the rope and
making the wheel spin counterclockwise about its central axis. Ignore the mass of the rope.

(a) How much rope unwinds while the wheel makes 1.00 revolution?
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The amount of rope unwound is given by the circumference of the wheel times the number of revolutions
made, i.e.

xrope = 2πR · (numberofrevolutions)

xrope = 2π 0.470 m · (1.00)

xrope = 2.95 m

(b) How much work is done by the rope on the wheel during this time?
The work done by the rope on the wheel is given by the torque applied to the wheel times the angle

through which it turns.

W = τθ

The torque is given by the radius of the wheel times the magnitude of the force the rope is pulled with, since
they are perpendicular. θ is the angle it turned in radians. One revolution is equal to 2π radians, so the
work done is

W = rFθ

W = 0.470 m 3.10 N · 2π

W = 9.15 J

(c) What is the torque on the wheel due to the rope?
As we said before, the torque is given by multiplying the radius of the wheel by the magnitude of the

force.

τ = rF

τ = 0.470 m 3.10 N

τ = 1.46 N ·m

3. GRR1 8.P.025. A sign painter is standing on a uniform, horizontal platform that is held
in equilibrium at the tenth-story level by two cables attached to supports on the roof of the
building (the figure below). The painter has a mass of 77 kg and the mass of the platform is
20.4 kg. The distance from the left end of the platform to where the painter is standing is d
= 2.0 m and the total length of the platform is 5.2 m.

(a) How large is the force exerted by the left-hand cable on the platform?
There are four forces in the platform: (1) the force exerted by the left-hand cable, Fl, (2) the force exerted

by the right-hand cable, Fr, (3) the weight of the painter, Wp, and (4) the weight of the platform itself, Wg.
The platform is in equilbrium, so we know that both the sum of the forces on the platform and the sum of
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the torques are both zero. We can exploit the fact that the sum of the torques must be zero around any axis
by placing the axis so that one of the torques is eliminated. That is, the sum of the torques is in general
given by ∑

~τ = ~τl + ~τr + ~τp + ~τg

If we place the axis for this torque equation at the force exerted by the right-hand cable we get∑
~τ = −τl + τp + τg

0 = −τl + τp + τg

τl = τp + τg

All of the forces are perpendicular to the platform, so we can write

τl = τp + τg

rlFl = rpWp + rgWg

Fl =
1
rl

(rpWp + rgWg)

And we can find the force exerted by the left-hand cable directly.

Fl =
1
rl

(rpWp + rgWg)

Fl =
1

5.2 m

(
( 5.2 m− 2.0 m) 77 kg · 9.8 m/s2 + ( 5.2 m)/2 · 20.4 kg · 9.8 m/s2

)
Fl = 564 N

(b) How large is the force exerted by the right-hand cable?
We can use the same trick here, except this time we should put the axis at the left cable. The sum of

the torques is then ∑
~τ = τr − τp − τg

0 = τr − τp − τg

τr = τp + τg

And solving for the force exerted by the right-hand cable gives

rrFr = rpWp + rgWg

Fr =
1
rr

(rpWp + rgWg)

Fr =
1

5.2 m

(
2.0 m 77 kg · 9.8 m/s2 + ( 5.2 m)/2 · 20.4 kg · 9.8 m/s2

)
Fr = 390 N
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4. GRR1 8.P.028. A uniform diving board, of length 5.0 m and mass 52 kg, is supported
at two points; one support is located 3.4 m from the end of the board and the second is at
4.6 m from the end (see the figure below). What are the forces acting on the board due to
the two supports when a diver of mass 62 kg stands at the end of the board over the water?
Assume that these forces are vertical. [Hint: In this problem, consider using two different
torque equations about different rotation axes. This may help you determine the directions of
the two forces.]

We can use the trick that we learned in the previous problem to solve this problem. There are four forces
on the diving board: (1) the force of the left support on the board, Fl, (2) the force of the right support on
the board, Fr, (3) the force of the diver on the board, Wd, and, finally, (4) the weight of the board itself,
Wb. In general, the sum of the torques is given by∑

~τ = ~τl + ~τr + ~τd + ~τb

We can eliminate the torque due to the right support by putting the axis we are considering at the right
support. We then get ∑

~τ = ~τl − τd − τb

0 = ~τl − τd − τb

~τl = τd + τb

rl
~Fl = rdWd + rbWb

~Fl =
1
rl

(rdWd + rbWb)

Notice that we have left ~Fl as a vector. This is because we don’t know which direction it points. Since we
do know the directions of the other torques, we can infer if it is upward or downward from the sign of the
answer we get. Evaluating this equation gives

~Fl =
1
rl

(rdWd + rbWb)

~τl =
1

1.2 m

(
3.4 m · 62 kg · 9.8 m/s2 + ( 3.4 m− ( 5.0 m)/2) 52 kg · 9.8 m/s2

)
~τl = 2.10 kN

Since this sign of the answer is positive and counter-clockwise is positive, the this force must point downward.
Likewise, to determine the magnitude and direction of the right support, we place the axis at the left

support. The sum of the torques is then∑
~τ = ~τr − τd − τb
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0 = ~τr − τd − τb

~τr = τd + τb

rr
~Fr = rdWd + rbWb

~Fr =
1
rr

(rdWd + rbWb)

Again we have left ~Fr as a vector. We will determine the direction of ~Fr from the sign of the answer we get.

~Fr =
1
rr

(rdWd + rbWb)

~Fr =
1

1.2 m

(
4.6 m · 62 kg · 9.8 m/s2 + ( 4.6 m− ( 5.0 m)/2) 52 kg · 9.8 m/s2

)
~Fr = 3.22 kN

The sign of this answer is positive, and since counter-clockwise is taken to be positive, this force must point
upward.

5. GRR1 8.P.044. A grinding wheel, with a mass of 24.8 kg and a radius of 23.3 cm, is a
uniform cylindrical disk.

(a) Find the rotational inertia of the wheel about its central axis.
The rotational inertia of a cylindrical disk is given by

I =
1
2
MR2

I =
1
2

24.8 kg( 0.233 m)2

I = 0.673 kg ·m2

(b) When the grinding wheel’s motor is turned off, friction causes the wheel to slow from 1200 rpm to

rest in 59.8 s. What torque must the motor provide to accelerate the wheel from rest to 1200 rpm in 4.00
s? Assume that the frictional torque is the same regardless of whether the motor is on or off.

The net torque on the wheel is given by

τnet = τmotor − τfric

Solving for τmotor we get

τmotor = τnet + τfric

τmotor = Iαnet + Iαfric

τmotor = I(αnet + αfric)

Using the fact that average anguluar acceleration is given by

α =
∆ω

∆t
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we find the torque of the motor needs to be

τmotor = I

(
∆ω

∆tstart
+

∆ω

∆tstop

)
τmotor = I∆ω

(
1

∆tstart
+

1
∆tstop

)
τmotor = ( 0.673 kg ·m2) ·

(
1200

rev
m

1 m
60 s

2π

1 rev

)(
1

4.00 s
+

1

59.8 s

)
τmotor = 22.6 N ·m

6. GRR1 8.TB.016. A tower outside the Houses of Parliament in London has a famous clock
commonly referred to as Big Ben, the name of its 13-ton chiming bell. The hour hand of each
clock face is 2.7 m long and has a mass of 60.0 kg. Assume the hour hand to be a uniform rod
attached at one end. (a) What is the torque on the clock mechanism due to the weight of one
of the four hour hands when the clock strikes noon? The axis of rotation is perpendicular to
a clock face and through the center of the clock. (b) What is the torque due to the weight of
one hour hand about the same axis when the clock tolls 9:00 a.m.?

The rods that are the clock hands are uniform, so the weight of the hand acts at the center of mass. At
noon, the center of mass is directly over the axis so that the angle between the rod and the force of the
weight is equal to zero. The torque about that axis is then

τ12:00 = rW sin θ

τ12:00 = rW sin 0◦

τ12:00 = 0

At nine o’clock, the force of the weight is perpendicular to the rod. The torque at that time is

τ9:00 = (2.7 m)/2 · 60.0 kg · 9.8 m/s2 sin 90◦

τ9:00 = 764 N ·m

7. GRR1 8.TB.032. A sign is supported by a uniform horizontal boom of length 3.00 m and
weight 80.0 N. A cable, inclined at an angle of 35◦ with the boom, is attached at a distance of
2.38 m from the hinge at the wall (the figure below ). The weight of the sign is 120 N. What
is the tension in the cable and what are the horizontal and vertical forces Fx and Fy exerted
on the boom by the hinge?

The sign is at equilibrium so we know that the both the sum of the forces and the sum of the torques
are zero. There are four forces on the boom: (1) the force of the wall on the boom, Fw, (2) the force of the
cable on the boom, T , (3) the weight of the sign, Ws, and (4) the weight of the boom itself, Wb. Let’s start
by using the torque equation to find the tension in the cable. Because the sum of the torques must be zero
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for any axis, we can place the axis so that one of the torques is zero. In general the sum of the torques is
given by ∑

~τ = ~τw + ~τT + ~τs + ~τb

Placing the axis at the wall gives ∑
~τ = τT − ~τs − ~τb

0 = τT − τs − τb

τT = τs + τb

The component of tension perpendicular to the boom is T⊥ = T sin 35◦. The other two forces are perpen-
dicular to the boom. The tension is then

rT T sin 35◦ = rsWs + rbWb

T =
1

rt sin 35◦
(rsWs + rbWb)

T =
1

2.38 m sin 35◦
(3.00 m · 120 N + 1.50 m · 80.0 N)

T = 350 N

To find Fx, we consider the sum of the forces in the horizontal direction∑
Fh = Fx − T cos 35◦

0 = Fx − T cos 35◦

Fx = T cos 35◦

Fx = 350 N cos 35◦

Fx = 290 N

The force in the y-direction can be found by using the torque equation and placing the axis where the
cable connects to the boom. The sum of the torques is then∑

~τ = ~τw − τs + τb

0 = ~τw − τs + τb

~τw = τs − τb

rw
~Fy = rsWs − rbWb

~Fy =
1
rw

(rsWs − rbWb)

~Fy =
1

2.38 m
((3.00 m− 2.38 m) · 120 N− (2.38 m− 1.50 m) · 80.0 N)

~Fy = 2 N

Like the diving board problem, the sign in front of this answer indicates the direction. The sign is positive
and counter-clockwise is positive, so this force must point downward.
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8. GRR1 8.TB.029. A house painter stands 3.0 m above the ground on a 5.0-m-long ladder
that leans against the wall at a point 4.7 m above the ground (the figure below ). The painter
weighs 680 N and the ladder weighs 120 N. Assuming no friction between the house and the
upper end of the ladder, find the force of friction that the driveway exerts on the bottom of
the ladder.

There are five forces on the ladder: (1) the normal force on the ladder due to the wall, Nh, (2) the normal
force on the ladder due to the ground, Nv, (3) the frictional force, Ff , (4) the weight of the painter, Wp, and
(5) the weight of the ladder itself, Wl. Since we don’t know the first three forces, we should try to eliminate
one or more of them from the torque equation like in problems 3, 4, and 7. The sum of the torques on the
ladder is then ∑

~τ = ~τh + ~τv + ~τf + ~τp + ~τl

We can eliminate two of the torques by placing the axis at the ground where the Fr and Nv act on the
ladder. The sum of the torques is then ∑

~τ = ~τh − ~τp − ~τl

0 = τh − τp − τl

τh = τp + τl

Let the angle that the ladder makes with the wall be θ. The perpendicular components of the three forces
in the torque equation are then

τh = τp + τl

rhNh cos θ = rpWp sin θ + rlWl sin θ

Nh =
sin θ

rh cos θ
(rpWp + rlWl)

Nh =
tan θ

rh
(rpWp + rlWl)

We can find θ by using the length of the ladder and the distance up the wall it touches.

cos θ =
4.7 m
5.0 m

θ = 19.9◦
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The normal force due to the wall is then

Nh =
tan θ

rh
(rpWp + rlWl)

Nh =
tan 19.9◦

5.0 m
(3.0 m · 680 N + (5.0 m)/2 · 120 N)

Nh = 170 N

The sum of the forces in the horizontal direction must be zero, i.e.∑
Fh = Ff −Nh

0 = Ff −Nh

Ff = Nh

So the frictional force must be equal to the normal force, Fr = 170 N, and it points toward the wall.

9. GRR1 8.TB.052. A solid sphere of radius R and mass M slides without friction down a
loop-the-loop track (the figure below ). The sphere starts from rest at a height of h above the
horizontal. Assume that the radius of the sphere is small compared to the radius r of the loop.
(a) Find the minimum value of h in terms of r so that the sphere remains on the track all the
way around the loop. (b) Find the minimum value of h if, instead, the sphere rolls without
slipping on the track.

We start by considering the forces on the sphere at the top of the loop-the-loop. There are only two forces
on the sphere; the normal force on the sphere by the track and the weight of sphere itself. The sum of these
two forces must be equal to Mac because is traveling in circular motion, i.e.∑

~F = N + W

Mac = N + W

M
v2

R
= N + Mg

By analyzing this equation we can see that the only variables that can change are v and N . The mass, M ,
and gravity, g, are always the same. So if N gets smaller, v has to get smaller. The normal force cannot be
negative, so the minimum value for v occurs when N = 0, or

M
v2

min

R
= Mg

Solving for vmin we get

M
v2

min

R
= Mg

v2
min

R
= g

vmin =
√

gR
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Now we have what the minimum speed must be so that the sphere will make it around the loop-the-loop.
The initial energy the sphere starts with is equal to Ei = Mgh, where h is the initial height. At the top of
the loop-the-loop the energy of the sphere is

Ef =
1
2
Mv2 + Mg(2R)

At the top of the loop-the-loop, the sphere has a speed equal to v and a height of 2R. Using conservation of
energy we know that Ei = Ef and the minimum height is given by

Mghmin =
1
2
Mv2

min + 2MgR

hmin =
1
2g

v2
min + 2R

hmin =
1
2g

(
√

gR)2 + 2R

hmin =
1
2g

gR + 2R

hmin =
1
2
R + 2R

hmin =
5
2
R

If the sphere is allowed to roll, only one detail changes. At the top of the loop-the-loop, the sphere has
not only translational and potential energy but also rotational energy. That is

Ef =
1
2
Mv2 + 2MgR +

1
2
Iω2

The angular velocity must be equal to ω = v/R if the ball rolls without slipping. Applying conservation
of energy, we have

Mghmin =
1
2
Mv2

min + 2MgR +
1
2

(
2
5
MR2

)(vmin

R

)2

hmin =
1
2g

(
√

gR)2 + 2R +
1
2

(
2
5g

R2

)(√
gR

R

)2

hmin =
1
2g

gR + 2R +
1
2

(
2
5g

R2

)( g

R

)
hmin =

1
2
R + 2R +

1
5
R

hmin =
1
2
R + 2R +

1
5
R

hmin =
27
10

R
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10. GRR1 8.TB.064. The rotational inertia for a diver in a pike position is about 15.5 kg ·m2;
it is only 8.0kg ·m2 in a tucked position (the figure below ). (a) If the diver gives himself an
initial angular momentum of 106 kg ·m2/s as he jumps off the board, how many turns can
he make when jumping off a 10.0-m platform in a tuck position? (b) How many in a pike
position? [Hint: Gravity exerts no torque on the person as he falls; assume he is rotating
throughout the 10.0 m dive.]

Using kinematics, the diver is in the air for a time, t, given by

∆y = −1
2
gt2

t =

√
−2∆y

g

The angular velocity, ω of the diver is related to the angular momentum, L, by

L = Iω

ω =
L

I

The number of turns the diver make in the air is then given by

#ofturns = ω · t ·
(

1 rev
2π

)
#ofturns =

L

I
·

√
−2∆y

g

1 rev
2π

The number of turns the diver makes in the tuck position is

#ofturns =
106 kg ·m2/s
8.0 kg ·m2

·

√
−2(−10.0 m)

9.8 m/s2
1 rev
2π

#ofturns = 3.0
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The number of turns the diver makes in the pike position is then

#ofturns =
106 kg ·m2/s
15.5 kg ·m2

·

√
−2(−10.0 m)

9.8 m/s2
1 rev
2π

#ofturns = 1.6

11. GRR1 8.TB.079. A block of mass m2 hangs from a string. The string wraps around a
pulley of rotational inertia I and then attaches to a second block of mass m1, which sits on
a frictionless table (the figure below ). What is the acceleration of the blocks when they are
released?

To solve this problem we look at the forces and torques on each piece. The sum of the forces on the first
mass is ∑

F1 = T1

m1a1 = T1

where T1 is the tension in the string between m1 and the pulley.
The sum of the forces on the second mass is∑

F2 = T2 −m2g

−m2a2 = T2 −m2g

where T2 is the tension in the string between m2 and the pulley.
The sum of the torques on the pulley is (taking counter-clockwise to be positive)∑

τ = T1R− T2R

−Iα = T1R− T2R

The angular acceleration is related to the acceleration of the string by α = a/R. Since everything is connected
to together, then the linear accelerations must be the same, i.e. a = a1 = a2. The equation of motion of the
pulley is then

−Iα = T1R− T2R

−I
a

R2
= T1 − T2

Using the above equations for m1 and m2, we can substitute in for the tensions and get

−I
a

R2
= (m1a)− (m2g −m2a)
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Solving for a gives

−I
a

R2
= (m1a)− (m2a + m2g)

−I
a

R2
−m1a−m2a = −m2g

a

(
I

R2
+ m1 + m2

)
= m2g

a =
m2g

I
R2 + m1 + m2


