Measurements of the Masses, Mixing, and Lifetimes, of B Hadrons at the Tevatron

Mike Strauss The University of Oklahoma for the CDF and DØ Collaborations

5th Rencontres du Vietnam Hanoi, Vietnam August 5-11, 2004

- **B** Physics at the Tevatron
- B Resonances
- **B**⁰ oscillations
- **B** Lifetimes
 - Exclusive Decays
 - Lifetime Ratios and Differences

Tevatron Luminosity

Collider Run II Integrated Luminosity

- ~0.3 fb⁻¹ delivered this year
- Detectors collect data at typically 85% efficiency
- These analyses use 150–350 pb⁻¹
- About 150 pb⁻¹ of data has been recorded but not yet analyzed

B Physics at the Tevatron

- Large production cross sections
- All *B* Hadrons produced (Best B_s and Λ_b)
- Larger inelastic cross section (S/B $\approx 10^{-3}$)
- Specialized Triggers:
 - Single lepton triggers
 - Dilepton triggers (e.g. J/ $\psi \rightarrow \mu^+ \mu^-$)
 - L1 Track triggers
 - L2 displaced track trigger for CDF

$$\sigma(p\bar{p}\rightarrow b\bar{b}) \approx 150 \ \mu b at 2 TeV$$

 $\sigma(e^+e^-\rightarrow b\bar{b}) \approx 7 \ nb at Z^0$
 $\sigma(e^+e^-\rightarrow b\bar{b}) \approx 1 \ nb at \Upsilon(4S)$

Silicon vertex tracker, Axial solenoid, Central tracking, High rate trigger/DAQ, Calorimeter, Muon system

L2 trigger on displaced vertexes Low *p* particle ID (TOF and dE/dx) Excellent mass resolution Excellent muon ID; $|\eta| < 2$ Tracking acceptance $|\eta| < 2-3$ L3 trigger on impact parameter

CDF and DØ have confirmed Belle's discovery of the X(3872)

X(3872)

7

Is the X charmonium, or maybe an exotic meson molecule?

 $BR(B_s \rightarrow \phi \phi) = 1.4 \pm 0.6(stat) \pm 0.2(syst) \pm 0.5(BR) \times 10^{-5}$

SM BR($B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) \approx (3.4 \pm 0.5) \times 10^{-9}; BR(B_{d}^{0} \rightarrow \mu^{+}\mu^{-}) \approx (1.5 \pm 0.9) \times 10^{-10}$

Observation of *B***

- *B* Spectroscopy:
 - $B(J^{p}=0^{-})$
 - $B^* (J^p = 1^-)$ decays to B_γ (100%)
 - $\Delta M = M(B^*) M(B) = 46 \text{ MeV/c}^2$
 - The B** consists of four separate states
 - 2 narrow states B_1 (1⁺) and B_2^* (2⁺), decay via D-wave;
 - 2 wide states $B_0^*(0^+)$ and $B_1'(1^+)$, decay via S-wave;
 - None of-these individual states are well established
- Decay channels used:
 - $B_d^{**} \rightarrow B^{\pm}\pi^+; B^{**+} \rightarrow B_d\pi^+; B^{**} \rightarrow B^*\pi \rightarrow B\pi(\gamma)$
 - $B^{\pm} \rightarrow J/\psi K^{\pm}$; $B_d \rightarrow J/\psi K^{*0}$; $B_d \rightarrow J/\psi K^0_s$

Distinct Narrow *B*** **States**

 $M(B_2^*) - M(B_1) = 23.6 \pm 7.7 \pm 3.9 \text{ MeV/c}^2$

- In SM B_d mixing is explained by box diagrams
 - Constrains V_{td} CKM matrix element
 - Mixing frequency Δm_d has been measured with high precision at $e^+e^- B$ factories (0.502 ± 0.007 ps⁻¹)
- Δm_d measurement at Hadron Colliders
 - Confirms initial state flavor tagging for later use in B_s and Δm_s measurements

B Oscillation Variables

B⁰ Mixing with SS Tag

$$A = (N_{RS} - N_{WS})/(N_{RS} + N_{WS})$$

$$N_{RS}$$
:N($B^0\pi^+$)
N_{WS}:N($B^0\pi^-$)

 $\Delta m_d = 0.443 \pm 0.052 (\text{stat}) \pm 0.030 (\text{sc}) \pm 0.012 (\text{syst}) \text{ ps}^{-1}$

B⁰ Mixing with SS Tag

Preliminary

 $\Delta m_d = 0.488 \pm 0.066 (\text{stat}) \pm 0.044 (\text{syst}) \text{ ps}^{-1}$

B⁰ Mixing with OS μ Tag

Combined result using three tagging methods will be released soon

B Hadron Lifetimes

- Naive quark spectator model: a 1 → 3 decay process common to all *B* hadrons.
- (NLO) QCD → Heavy Quark
 Expansion predicts deviations in rough agreement with data
- Experimental and theoretical uncertainties are comparable
- Lifetime differences probe the HQE to 3^{rd} order in Λ_{QCD}/m_b
- Goal: measure the ratios accurately

B Hadron Lifetime Ratios

CDF

Improvements since 2003:

- Selection minimizes stat
 syst
- 12 parameter maximum likelihood fit
- 240 pb⁻¹

DØ analysis is similar to this CDF "improved" analysis

CDF

Uses one exponential decay in the fit

CDF

$$\pi(B^+)/\pi(B^0) = 1.080 \pm 0.042$$

Most systematic uncertainties cancel in the ratio

Lifetime Ratio τ (B⁺)/ τ (B⁰)

Novel Analysis Technique using $B \rightarrow \mu D^{c^{(*)}}X$

- Directly measure ratio instead of individual lifetimes
- Split $D^0 \rightarrow K\pi$ sample:
 - D^{*+} (with slow π^+) \leftarrow mainly from B^0
 - $D^0 \leftarrow \text{mainly from } B^+$

Lifetime Ratio $\tau(B^+)/\tau(B^0)$

- Measure N(µD*+)/N(µD⁰) in bins of VPDL
- In both cases fit D⁰ signal to extract N
- Use slow pion only to distinguish B⁰ from B⁺
 (not in vertexing, Kfactors etc., to avoid lifetime bias)

DØ RunII Preliminary, Luminosity = 250 pb⁻¹

 $\pi(B^{+})/\pi(B^{0}) = 1.093 \pm 0.021(\text{stat}) \pm 0.022(\text{syst})$

- Uses $B_{\rm s} \rightarrow J/\psi \phi$; Uses $B_{\rm d} \rightarrow J/\psi K^{*0}$
- Allows measurement of many parameters including polarization amplitudes and $\Delta\Gamma_s = 1/\tau_L 1/\tau_H$

$$\begin{vmatrix} B_{s}^{H} \end{pmatrix} = p | B_{s} \rangle + q | \overline{B}_{s} \rangle = \frac{1}{\sqrt{2}} \left(| B_{s} \rangle + | \overline{B}_{s} \rangle \right)$$
 CP odd
$$\begin{vmatrix} B_{s}^{L} \end{pmatrix} = p | B_{s} \rangle - q | \overline{B}_{s} \rangle = \frac{1}{\sqrt{2}} \left(| B_{s} \rangle - | \overline{B}_{s} \rangle \right)$$
 CP even

$$|B_{s}\rangle = \frac{1}{\sqrt{2}} \left(|B_{s}^{H}\rangle + |B_{s}^{L}\rangle \right)$$
$$|\overline{B}_{s}\rangle = \frac{1}{\sqrt{2}} \left(|B_{s}^{H}\rangle - |B_{s}^{L}\rangle \right)$$

Transversity Angles

Angular Projections and fit for *B*_s

Unconstrained fit

5-11 August, 2004

5th Rencontres du Vietnam

B_s and **B**_d Amplitudes

DØ results coming soon

- DØ and CDF are measuring many properties of B hadrons that nicely complement those measured at "B factories"
- We expect 500 pb⁻¹ by the end of the year
- More exciting results are expected even in the next few weeks

