Rare Heavy Flavor Decays at DØ

Mike Strauss

for the DØ Collaboration The University of Oklahoma The Oklahoma Center for High Energy Physics

XXXIII International Conference on High Energy Physics Moscow, Russia 26 July – 2 August, 2006

Outline

- Search for $D^+ \to \pi^+ \mu^+ \mu^-$
 - FCNC in Charm Sector
- Search for $B_s^{\ 0} \to \mu^+ \mu^-$ and $B_s^{\ 0} \to \phi \mu^+ \mu^-$
 - FCNC in Bottom Sector

- Experimental limits exist for $b \rightarrow s$ and $s \rightarrow d$
- Some models predict violations from SM in up quark sector, but not down quark sector

- RPV in the up sector Burdman et.al. hep-ph/0112234
- Little Higgs Models *Fajfer et.al. hep-ph/0511048*

 $c \rightarrow u \mu^+ \mu^-$ Analysis

- •~1 fb⁻¹ of data • Find $D_s^+ \rightarrow \pi^+ \phi \rightarrow \pi^+ \mu^+ \mu^-$ • (100% of $D_s^+ \rightarrow \pi^+ \phi$) • BF $(D_s^+ \rightarrow \pi^+ \phi) = 0.036 \pm 0.009$ • BF $(\phi \rightarrow \mu^+ \mu^-) =$ (2.850 \pm 0.19) × 10⁻⁴ • Search for $D^+ \rightarrow \pi^+ \mu^+ \mu^$ for $m(\mu^+ \mu^-) \neq m(\phi)$
- Add track to low mass dimuon candidate

Selection and Optimization Criteria

- Isolation: $I_D = p(D) / \sum p_{\text{cone}}$
 - $R = (\Delta \eta^2 + \Delta \phi^2)^{\frac{1}{2}} < 1.0$
- Transverse flight length significance: $S_{\rm D}$
- Collinearity angle: Θ_D
- Pion impact parameter significance: S_{π}
- $M = \chi^2_{\mathrm{vtx}} + \kappa_\pi^2 + \Delta R_\pi^2$
 - $\kappa_{\pi} = 1/p_T(\pi)$

 $D^+
ightarrow \pi^+ \phi
ightarrow \pi^+ \mu^+ \mu^-$

$0.96 < m(\mu^+ \mu^-) < 1.06 \text{ GeV}/c^2$

)CHEP

$$\frac{n(D^{+})}{n(D_{s})} = \frac{f_{c \to D}^{+}}{f_{c \to D}^{s}} \times \frac{f_{p}^{s}}{f_{p}^{+}} \times \frac{\varepsilon^{+}}{\varepsilon^{s}} \times \frac{BF(D^{+} \to \pi^{+}\phi \to \pi^{+}\mu^{+}\mu^{-})}{BF(D_{s}^{+} \to \phi\pi^{+}) \times BF(\phi \to \mu^{+}\mu^{-})}$$

- $f_{c \rightarrow D}$: Fraction produced in fragmentation
- f_p : Prompt fraction
- ε : Reconstruction efficiency

$$\frac{\mathrm{BF}(D^+ \to \pi^+ \phi \to \pi^+ \mu^+ \mu^-)}{\mathrm{BF}(D_s^+ \to \phi \pi^+) \times \mathrm{BF}(\phi \to \mu^+ \mu^-)} = 0.17 \pm 0.07 \pm 0.05$$

$$BF(D^+ \to \pi^+ \phi \to \pi^+ \mu^+ \mu^-) = (1.75 \pm 0.7 \pm 0.5) \times 10^{-6}$$

SM: 1.77×10^{-6} CLEO-c ($\phi \rightarrow ee$): $\left(2.7^{+3.6}_{-1.8} \pm 0.2\right) \times 10^{-6}$

Nonresonant $D^+ o \pi^+ \mu^+ \mu^-$

 $0.2 < m(\mu\mu) < 0.96 \text{ GeV}/c^2$

 $0.96 < m(\mu\mu) < 1.06 \text{ GeV}/c^2$

 $B_{c}^{0} \rightarrow \mu^{+} \mu^{-}$

- FCNC with zero cross section at tree level
- SM Branching Fraction:
 - BF($B_s^{\ 0} \to \mu^+ \mu^-$) = (3.42 ± 0.54) × 10⁻⁹
 - BF($B_d^{\ 0} \to \mu^+ \mu^-$) = (1.00 ± 0.14) × 10⁻¹⁰
- Non-SM processes can enhance $BF(B_s^0 \to \mu^+ \mu^-)$
 - MSSM enhances BF up to 3 orders of magnitude
 - 2HDM, minimal supergravity, minimal SO(10) GUT, all have BF enhancements

- 300 pb⁻¹ data analyzed (*PRL 94*, 071802 (2005))
- Sensitivity for 0.7 fb⁻¹ determined
- Blind analysis to avoid bias
- Side bands used for background determination
- Normalize to resonant decay $B^+ \rightarrow J/\psi K^+$
 - $p_T(\mu) > 2.5 \text{ GeV}/c$
 - /η(μ)|< 2
 - $\chi^2_{\text{vertex}} < 10$
 - CFT hits > 4
 - **SMT** hits > 3

OCHEP

- $p_T(B_s) > 5 \text{ GeV}/c$
- $\delta L_{xy} < 0.15 \text{ mm}$

OCHER

Analysis and Optimization

- Optimization using MC signal and background from data sidebands using:
 - Collinearity (Pointing) Angle
 - Decay length significance
 - Isolation

Analysis and Normalization

$$\mathrm{BF}(B_{s}^{0} \to \mu^{+}\mu^{-}) \leq \frac{N_{ul}}{N_{B^{\pm}}} \cdot \frac{\varepsilon_{\mu\mu K}^{B^{\pm}}}{\varepsilon_{\mu\mu}^{B_{s}^{0}}} \cdot \frac{\mathrm{BF}(B^{\pm} \to J/\psi(\mu^{+}\mu^{-})K^{\pm})}{\frac{f_{b \to B_{s}}}{f_{b \to B_{u,d}}} + R \cdot \frac{\varepsilon_{\mu\mu}^{B_{d}^{0}}}{\varepsilon_{\mu\mu}^{B_{s}^{0}}}$$

- $R = BF(B_d)/BF(B_s)$ is small due to $|V_{td}/V_{ts}|^2$
- $\varepsilon_{B} + \varepsilon_{Bs}$ efficiency
- $\mathcal{E}_{Bd} / \mathcal{E}_{Bs}$ relative efficiency for $B_d \to \mu^+ \mu^-$ versus $B_s \to \mu^+ \mu^-$
- f_s/f_u fragmentation ratio

Observed 4, expect 4.3 ± 1.2

Hit

DØ Sensitivity 0.7 fb⁻¹

- For new dataset of 0.4 fb⁻¹
 - Expect 2.2 ± 0.7 background events
 - Expect a sensitivity of about 3.0×10–7 @ 95% C.L.
- Combined 0.7 fb⁻¹ sensitivity of 1.9×10–7 @ 95% C.L

Search for $B_s^{\ 0} \rightarrow \phi \,\mu^+ \,\mu^-$

- ~0.45 fb⁻¹ of data
- Similar selection criteria to $B_s^{\ 0} \rightarrow \mu^+ \mu^-$
- $0.5 < m(\mu\mu) < 4.4 \text{ GeV}/c^2 \text{excluding } \pm 5\sigma \text{around } J/\psi \& \psi(2S)$
- $\phi \to K^+ K^-$
- $p_T(K) > 0.7 \text{ GeV/c}$
- $1.008 < m(\phi) < 1.032 \text{ GeV}/c^2$

- Blind analysis Optimization using MC signal and background from data sidebands using:
 - Pointing Angle < 0.1 rad
 - Decay length significance > 10.3
 - Isolation > 0.72
- Normalize to resonant decay $B_s \rightarrow J/\psi \phi$

Mike Strauss

 $B_s^{\ 0} \rightarrow \phi \,\mu^+ \,\mu^-$ Results

- Expected background from sidebands: 1.6 ± 0.4 events
- Observe zero events in signal region

F

I Hi H

 $B_s^{\ 0} \rightarrow \phi \,\mu^+ \,\mu^-$ Results

$$\frac{\mathrm{BF}(B_{s}^{0} \to \phi\mu^{+}\mu^{-})}{\mathrm{BF}(B_{s}^{0} \to J/\psi\phi)} = \frac{N_{\mathrm{ul}}}{N_{B_{s}^{0}}} \cdot \frac{\varepsilon_{J/\psi\phi}}{\varepsilon_{\phi\mu^{+}\mu^{-}}} \cdot B(J/\psi \to \mu^{+}\mu^{-})$$

$$\frac{\mathrm{BF}(B_{s}^{0} \to \phi\mu^{+}\mu^{-})}{\mathrm{BF}(B_{s}^{0} \to J/\psi\phi)} < 4.4 \times 10^{-3}$$

$$(10 \text{ times better than best limit})$$

Accepted for PRD Rapid Communication

- SM BF($B_s^0 \rightarrow \phi \mu^+ \mu^-$) ~ 1.6 × 10⁻⁶ (30% uncertainty)
- Accessible with about 4 fb⁻¹ of data

- Searches for FCNC can give insight into physics beyond the Standard Model
- New DØ limits on $D^+ \to \pi^+ \mu^+ \mu^-$ and $B_s^{\ 0} \to \phi \mu^+ \mu^-$ are world's best
- New limit on $B_s^{\ 0} \to \mu^+ \mu^-$ should be coming soon

