# Recent Results on Jet Physics and $\alpha_s$

## XXI Physics in Collision Conference Seoul, Korea June 28, 2001

Presented by Michael Strauss The University of Oklahoma

PIC 2001

Michael Strauss

The University of Oklahoma

### Outline

- Introduction and Experimental Considerations
- Jet and Event Characteristics
  - Low E<sub>T</sub> Multijet Studies
  - Subjet Multiplicities
- Cross Sections
  - Three-to-Two Jet Ratio
  - Ratio at Different Center-of-Mass Energies
  - Inclusive Production
  - DiJet Production

## Motivation for Studying Jets

- Investigates pQCD
  - Compare with current predictions
  - pQCD is a background to new processes
- Investigates parton distribution functions (PDFs)
   Initial state for all proton collisions
- Investigates physics beyond the Standard Model





**Michael Strauss** 

### **Cone Definition of Jets**

Centroid found with 4-vector addition

Cone Definition
 R=0.7 in η-φ



• Merging and splitting of jets required if they share energy  $\eta = -\ln[\tan(\theta/2)]$ 



 R<sub>sep</sub> required to compare theoretical predictions to data

> (R<sub>sep</sub>is the minimum separation of 2 partons to be considered distinct jets)

## k<sub>T</sub> Definition of Jets

$$d_{ij} = \min({}^{i}E_T^2, \; {}^{j}E_T^2) \frac{\Delta \mathbf{R}_{ij}^2}{D^2}$$
$$d_{ii} = {}^{i}E_T^2$$

 $\min(d_{ii'} \ d_{ij}) = d_{ij} \Rightarrow \text{Merge}$  $\min(d_{ii'} \ d_{ij}) = d_{ii} \Rightarrow \text{Jet}$ 

### $\bullet k_T$ Definition

cells/clusters are combined if their relative  $k_T^2$  is "small" (D=1.0 or 0.5 is a scaling parameter)

- Infrared Safe
- Same definition for partons, Monte Carlo and data
- Allows subjet definitions

### k<sub>T</sub> and Cone Algorithm

Use CTEQ4M and Herwig
Match k<sub>T</sub> jets with cone jets



99.9% of Jets have  $\Delta R < 0.5$ 

 $p_{T}$  of  $k_{T}$  algorithm is slightly higher

PIC 2001

Michael Strauss

### k<sub>T</sub> Algorithm and Subjets



PIC 2001

### Jet Selection Criteria

Typical selections on EM fraction, hot cells, missing E<sub>T</sub>, vertex position, etc.

> 97% efficient> 99% pure





# Jet Energy Corrections

- Response functions
- no distinction between jets of different kinds
- Noise and underlying event
- "Showering"



 Resolutions: Uncertainty on E<sub>T</sub> Estimated with dijet balancing or simulation

Important for cross section measurement

E<sub>T</sub>

E<sub>T</sub>



Jet and Event Quantities

• Low E<sub>T</sub> Multijet Studies

• Subjet Multiplicity

### $D \varnothing Low E_T Multijet events$

At high-E<sub>T</sub>, NLO QCD does quite well, but the number of jets at low-E<sub>T</sub> does not match as well. (Comparison with Pythia)

Each jet's  $E_T$ >20 GeV.

Theory normalized to 2-jet data >40 GeV.

Looking also at Jetrad and Herwig



PIC 2001

**Michael Strauss** 

The University of Oklahoma

### $D \oslash Low E_T$ Multijet events



### $D \oslash$ Subjet Multiplicity Using K<sub>T</sub> Algorithm

- Perturbative and resummed calculations predict that gluon jets have higher subjet multiplicity than quark jets, on average.
- Linear Combination:





### DØ Subjet Multiplicity Using K<sub>T</sub> Algorithm

- Assume M<sub>g</sub>, M<sub>Q</sub> independent of √s
- Measure *M* at two √s energies and extract the *g* and *Q* components



## $D \oslash$ Subjet Multiplicity Using K<sub>T</sub> Algorithm

### Raw Subjet Multiplicities

**Extracted Quark and Gluon Mutiplicities** 



Higher  $M \Rightarrow$  more gluon jets at 1800 GeV

PIC 2001

### DØ Subjet Multiplicity Using K<sub>T</sub> Algorithm

$$R \equiv \frac{\left\langle M_g \right\rangle - 1}{\left\langle M_Q \right\rangle - 1}$$

 $R = 1.84 \pm 0.15$  (stat)  $^{+0.22}_{-0.16}$  (syst)

**HERWIG** prediction =1.91±0.16(stat)

Largest uncertainty comes from the gluon fractions in the PDFs

Coming soon as a PRD





PIC 2001

The University of Oklahoma

### $\alpha_s$ from ZEUS Subjets

$$\langle n_{sub} - 1 \rangle \Rightarrow - 2000$$

 $\Rightarrow$  Proportional to  $\alpha_s$ 

Major Systematic Errors
Model dependence (2-3%)
Jet energy scale (1-2%)
Major Theoretical Errors
Variation of renormalization scale



 $\alpha_s(M_z) = 0.1185 \pm 0.0016 \text{ (stat)} + 0.0067 \text{ (syst)} + 0.0089 \text{ (syst)} + 0.0089 \text{ (h)}$ 

**Cross Sections** 

- Inclusive cross sections
  - Rapidity dependence
  - K<sub>T</sub> central inclusive
- R<sub>32</sub>
- 630/1800 ratio of jet cross sections
- Di-Jets
- $\alpha_s$  Conclusions



### Jet Cross Sections

- How well are pdf's known?
- Are quarks composite particles?
- What are appropriate scales?
- What is the value of  $\alpha_s$ ?
- Is NLO ( $\alpha_s^3$ ) sufficient?

 $\sigma(p\overline{p} \to \text{jet} + X) = \sum_{abcX} \int dx_1 dx_2 f_{a/A} f_{b/B} \hat{\sigma}(ab \to cX)$ 

### **CTEQ Gluon Distribution Studies**

- Momentum fraction carried by quarks is very well known from DIS data
- Fairly tight constraints on the gluon distribution except at high x
- Important for high E<sub>T</sub> jet production at the Tevatron and direct photon production



### **Experimental Differential Cross Section**

### **CDF Inclusive Jet Cross Section**



The University of Oklahoma

PIC 2001

### x-Q<sup>2</sup> Measured Parameter Space

From DØ Inclusive Cross Section Measurement



Michael Strauss

### DØ Inclusive Jet Cross Section



- Five rapidity regions
- Largest systematic uncertainty due to jet energy scale
- Curves are CTEQ4M

PRL 86, 1707 (2001)



Michael Strauss

The University of Oklahoma

### **Gluon PDF Conclusions**

| PDF     | χ2           | χ2/dof | Prob  |
|---------|--------------|--------|-------|
| CTEQ3M  | 121.56       | 1.35   | 0.01  |
| CTEQ4M  | 92.46        | 1.03   | 0.41  |
| CTEQ4HJ | <b>59.38</b> | 0.66   | 0.99  |
| MRST    | 113.78       | 1.26   | 0.05  |
| MRSTgD  | 155.52       | 1.73   | <0.01 |
| MRSTgU  | 85.09        | 0.95   | 0.63  |

- $\chi^2$  determined from complete covariance matrix
- Best constraint on gluon PDF at high x
- Currently being incorporated in new global PDF fits

### Inclusive Cross Section Using K<sub>T</sub> Algorithm

-0.5 < η < 0.5 D = 1.0

- Predictions IR and UV safe
- Merging behavior well-defined for both experiment and theory



### Comparison with Theory

- Normalization differs by 20% or more
- No statistically significant deviations of predictions from data
- When first 4 data points ignored, probabilities are 60-80%

| PDF            | χ/dof | Prob |
|----------------|-------|------|
| MRST           | 1.12  | 31   |
| MRSTg <b>↑</b> | 1.38  | 10   |
| MRSTg↓         | 1.17  | 25   |
| CTEQ3M         | 1.56  | 4    |
| CTEQ4M         | 1.30  | 15   |
| CTEQ4HJ        | 1.13  | 29   |



PIC 2001

Michael Strauss

The University of Oklahoma



### Correction for hadronization explains low $E_{\rm T}$ behavior

Michael Strauss

# $\frac{d\sigma}{dE_T} = \alpha_s^2(\mu_R) X^{(0)}(\mu_R,\mu_F) [1 + \alpha_s(\mu_R)k_1(\mu_R,\mu_F)]$

- $\alpha_{\rm s}^{2} X^{(0)}$  is LO prediction
- $\alpha_{\rm s}^{3} X^{(0)} k_1$  is NLO prediction
- X<sup>(0)</sup> and k<sub>1</sub> determined from JETRAD
- $\overline{\text{MS}}$  scheme used
- Jet cone algorithm used with  $R_{\rm sep} = 1.3$
- $\alpha_{\rm s}$  determined in 33  $E_T$  bins



**Michael Strauss** 

### CDF $\alpha_s$ from Inclusive Cross Section

**CDF** Preliminary

- Experimental systematic uncertainty
- Largest at low E<sub>T</sub> is underlying event
- Largest at high E<sub>T</sub> is fragmentation and pion response



### CDF $\alpha_s$ from Inclusive Cross Section

**CDF** Preliminary



Theoretical uncertainties each ~ 5%



FIG. 3. Uncertainties due to the renormalization scale (a) and parton distribution functions (b).

 $\alpha_s(M_Z) = 0.1129 \pm 0.0000 \text{ M} \text{ (statu)}_{\alpha_s=0.00089}^{\text{the inset shows the variation of which is the variation of$ 



#### PIC 2001

Michael Strauss

### The University of Oklahoma

### **ZEUS Inclusive Jet Production**



Measured cross section slightly above NLP pQCD in forward section

**Michael Strauss** 

### **ZEUS Inclusive Jet Production**

 $\alpha_s$  Results:

Uses various fits of  $d\sigma/dQ^2$  and  $d\sigma/dE_T$ 

Full phase-space

 $\alpha_s(M_Z) = 0.1241 \pm 0.0009 \text{ (stat)} + 0.0043 \text{ (exp)} + 0.0053 \text{ (th)}$ 

High-Q<sup>2</sup> region (Q<sup>2</sup>>500 GeV<sup>2</sup>)

 $\alpha_s(M_Z) = 0.1190 \pm 0.0017 \text{ (stat)} {}^{+0.0049}_{-0.0023} \text{ (exp)} {}^{+0.0026}_{-0.0026} \text{ (th)}$ High-E<sub>T</sub> region (>14 GeV)

 $\alpha_s(M_Z) = 0.1206 \pm 0.0015 \text{ (stat)} \stackrel{+0.0058}{_{-0.0045}} \text{ (exp)} \stackrel{+0.0041}{_{-0.0030}} \text{ (th)}$ 

# R<sub>32</sub>: Motivation and Method

- Study the rate of soft jet emission (20-40 GeV)
  - OCD multijet production background to interesting processes
  - Predict rates at future colliders
- Improve understanding of the limitations of pQCD
  - Identify renormalization sensitivity
  - Does the introduction of additional scales improve agreement with data ?
- Measure the Ratio

$$R_{32} = \frac{\sigma_{3}(p \overline{p} \rightarrow 3 + \text{jets})}{\sigma_{2}(p \overline{p} \rightarrow 2 + \text{jets})} \text{ vs. } H_{T}$$

• with  $H_T$ 

$$H_T = \sum_{\text{jets}} E_T$$

- for all jets with
  - $E_T$  > 20, 30, 40 GeV for  $\eta$ <3 and  $E_T$  > 20 GeV for  $\eta$ <2

# Inclusive R<sub>32</sub>

### Features:

- Rapid rise H<sub>T</sub><200GeV
- Levels off at high H<sub>T</sub> Interesting:
- 70% of high E<sub>T</sub> jet events have a third jet above 20 GeV
- 50% have a third jet above 40 GeV



### R<sub>32</sub> Sensitivity to Renormalization Scale

E<sub>T</sub>>20 GeV, η<2 show greatest sensitivity to scale



# R<sub>32</sub> Results

- Jet emission best modeled using the same scale
  - i.e. the hard scale for all jets
- Best scale is that which minimizes  $\chi^2$  for all criteria
  - μ<sub>R</sub>=0.6E<sub>T</sub><sup>max</sup>, for 20 GeV thresholds
  - μ<sub>R</sub>=λ H<sub>T</sub>, λ≈.3 for all criteria
- Introduction of additional scales unnecessary.

 $E_T$ >20 GeV,  $\eta$ <2



PRL 86, 1955 (2001)

## DØ Cross Section Ratio: $\sigma(630)/\sigma(1800)$ vs x<sub>T</sub>

Ratio of the scale invariant cross sections :

 $\sigma_{\rm s} = ({\rm E_T}^3/2\pi) ({\rm d}^2\sigma/{\rm d}{\rm E_T}{\rm d}\eta)$ 

vs  $X_{T} = E_{T} / (\sqrt{s} / 2)$ 

at different cm energies (630 and 1800 GeV)

Ratio allows substantial reduction in uncertainties (in theory and experiment). May reveal:

- Scaling behavior
- Terms beyond LO (  $\alpha_s^2$  )



**Michael Strauss** 

### DØ Inclusive Cross Section

 $\sqrt{s} = 1800 \text{ GeV}$ 





### **Cross Section Ratio**

### σ(630)/σ(1800) is 10-15% below NLO QCD predictions

- Top plot: varying choice of pdf has little effect
- Bottom plot: varying μ<sub>R</sub>
   scale is more significant
- Better agreement where μ<sub>R</sub> different at 630 and 1800 (unattractive alternative !)
- Higher order terms will provide more predictive power!



Published in PRL 86, 2523 (2001)

### **CDF DiJet**

### Provides precise information about initial state partons

Cone of R=0.7 Both Jets:  $E_T$ >10 GeV Jet 1: 0.1< $|\eta|$ <0.7 Jet 2: Four  $\eta$  regions 0.1< $|\eta|$ <0.7 0.7< $|\eta|$ <1.4 1.4< $|\eta|$ <2.1 2.1< $|\eta|$ <3.0



### **CDF DiJet Cross Section**

| PDF           | χ²/dof |
|---------------|--------|
| MRST          | 2.68   |
| MRST <b>↑</b> | 3.63   |
| MRST↓         | 4.49   |
| CTEQ4M        | 2.88   |
| CTEQ4HJ       | 2.43   |
|               |        |

All < 1% Probability





**b**) 0.7 <  $|\eta_2|$  < 1.4

**Michael Strauss** 



**PIC 2001** 

The University of Oklahoma



-0.0033 (-120044 (-10.0044 (-10.0044 (-10.0044 ))

**Michael Strauss** 

## ZEUS $\alpha_s$ Summary

- Dijets has lowest total error of all Zeus measurements.
- All measurements consistent with PDG value of 0.1185±20



### **Tevatron Run II**

<u>Run II</u>:  $E_{cm} = 1.96 \text{ TeV}, \int \mathcal{L} \rightarrow 2 \text{fb}^{-1}$ expect: ~100 events  $E_T > 490 \text{ GeV}$ and ~1K events  $E_T > 400 \text{ GeV}$ 

<u>Run I:</u>  $E_{cm} = 1.8 \text{ TeV}, \int \mathcal{L} \approx 0.1 \text{ fb}^{-1}$ yielded 16 Events  $E_T > 410 \text{ GeV}$ 

Great reach at high x and Q<sup>2</sup>, A great place to look for new physics!



# **Conclusions from Jet Physics**

### Growing sophistication in jet physics analysis

- ♦Error matrices
- New jet algorithms
- Better corrections
- PDF refinements
- Results generally agree with NLO QCD and PDF's
  - Cross section measurements will continue to refine PDF's
  - $\blacklozenge \alpha_s$  measurements agree with PDG
  - ◆Low E<sub>T</sub> physics still require theoretical refinements

### Jet physics should continue to provide fruitful developments

- $\bullet High \: E_{\tau}$  region can reveal compositeness and other new physics
- $\bullet$ Low E<sub>T</sub> region reveals soft parton distributions in proton
- NNLO and other theoretical refinements needed
- Results needed for "discovery" measurements