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Abstract
We commence a fundamental re-examination of the kinetic theory of charged
particle swarms in molecular gases, focusing on collisional excitation of
molecular rotational and ro-vibrational states by electrons. Modern day analysis
of electron swarms has been based upon the kinetic equation of Wang-Chang
et al, which simply treats all processes as scalar energy excitations, and ignores
angular momentum conservation and the vector dynamics associated with
rotational excitation. It is pointed out that there is no alternative, more exact
kinetic equation readily available for electrons which enables one to directly
ascertain the degree of error introduced by this approximation. Thus in this
preliminary study, we approach the problem indirectly, from the standpoint of
the neutral molecules, using the Waldmann–Snider quantum kinetic equation,
and insist that an electron–molecule collision must look the same from the
perspective of both electron and molecule. We give a formula for quantitatively
assessing the importance of scalar versus vectorial treatments of rotational
excitation by looking at the post-collisional ‘echo’ produced by an electron
swarm as it passes through the gas. It is then pointed out that in order to remedy
any deficiency, it will be necessary to introduce a kinetic collisional operator
non-local in space to properly account for angular momentum conservation, as
has long been established in the literature. This is a major exercise and given the
preliminary nature of this study, we consider the inclusion of such effects from
a formal point of view only. In particular we show how non-local effects lead
to a spatially dependent ‘source’ term in the equation of continuity, and hence
to corrections for both drift velocity and diffusion coefficients. The magnitude
of these corrections has yet to be established.
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1. Introduction

Transport processes in molecular gases are generally significantly influenced by collisions
involving both rotational and vibrational excitation, and naturally any kinetic equation should
treat the corresponding the collision dynamics correctly. In particular, for swarms of electrons
or ions in molecular gases, it is clear that excitation of rotational states must be coupled
with a transfer of orbital to rotational angular momentum, consistent with conservation of
total angular momentum. Unfortunately, in the present day kinetic theory of swarms, angular
momentum is ignored, and rotational excitation is treated no differently from a simple, scalar
process involving energy exchange only, just like vibrational or electronic excitation. By itself,
that might appear merely a problem of esoteric significance, but when one also considers the
controversy surrounding the (e, H2) vibrational (including ro-vibrational) cross section, which
has prevailed for some thirty years, and defied every attempt to resolve it, further investigation
seems called for. A brief summary of the situation is given below.

There is a large (�60%) discrepancy in published results between values of the cross
section obtained from, on the one hand, swarm experiments [1] and, on the other, those
obtained from quantum mechanical theory [2, 3] and beam experiments [4]. In contrast, the
situation for rotational excitations is far more satisfactory,with good agreement between theory
and swarm derived cross sections. The H2 controversy has been reviewed over the years [5, 6],
and the discrepancy continually highlighted. For other diatomic gases such as N2 [7] the
situation is, however, not so clear cut.

Swarm experiments [1, 8] have traditionally provided the most accurate information
about low energy (�1 eV) ion–atom and ion–molecule interaction potentials, on the one
hand, and electron–atom and electron–molecule cross sections, on the other hand. There is a
high demand for these cross sections and for transport coefficients in such diverse scientific
and technological applications as astrophysics, lasers, microchip etching technology and high
energy particle detectors. The swarm measurements at the Australian National University [1, 8]
were unparalleled in their accuracy and, when combined with modern kinetic theory (see [9]
for a review), enabled a large number of low energy cross sections to be found. Likewise,
the process of deduction of interaction potentials from ion swarm data has been considerably
refined over the years, due to significant advances in kinetic theoretical calculations, notably
by Mason, Viehland and collaborators [10].

In addition to swarm experiments, beam experiments have been independently probing
electron–molecule interaction cross sections, recently to energies well below 1 eV. In the
case of H2, information has been obtained right down to the threshold of the first vibrational
excitation, at about 0.5 eV. Quite independently of experiment, quantum theoretical calculations
have furnished e–H2 impact cross sections at low energies [3], which tend to support the beam
experimental results.

The discrepancy referred to above has hitherto been taken to imply that there is something
wrong with either:

(i) the swarm experiments or

(ii) current beam experiments or

(iii) quantum theoretical analysis.

To this list we add a fourth possibility [4] which is yet to be fully explored and which is the
subject of the current investigation:

(iv) the kinetic theory which has been used to ‘unfold’ the swarm experiments may be deficient.
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Whatever the origin, the implications are of concern. This is because H2 is the simplest
of molecular systems and, if there is a problem with it, then a shadow of doubt is cast over
all electron–molecule cross sections, however obtained. The seriousness of the problem has
long been recognized and there has been a considerable effort over the years aimed at its
resolution [5, 11], without success. A new tack is clearly required. Of course, if after pursuing
the present line of investigation, the conventional theory comes through unscathed, it will
throw the spotlight squarely back on (i)–(iii) above.

Before outlining our plan of attack, we should mention that the problem is already being
considered elsewhere on three other fronts:

• Using existing kinetic theory, based upon Boltzmann’s equation and associated ‘multiterm’
computer codes [9], incorporating realistic angular anisotropies in the cross sections [11].

• Using Monte Carlo simulation [11].
• Through an examination of possible quantum degeneracy effects [12], especially near the

surface of the anode [13].

So to the outline of this paper. Put most simply, it is about the fundamental kinetic theory
of charged particle swarms in molecular gases. While H2 is of special interest, the questions
raised are far more general. The premise is that something may be seriously wrong somewhere.
If it is kinetic theory that is at fault, then could it be because of the flawed treatment of angular
momentum? If so, how do we go about correcting things? We begin our task in section 2
with a review of the equations and assumptions of the conventional kinetic theory for electron
swarms. In section 3 we take a different tack and focus on the properties of the neutral gas.
What could it be about the onset of vibrational and ro-vibrational excitation of molecules, as
distinct from pure rotations, that traditional kinetic theory analysis might not handle well? To
help address this question, we argue that the treatment of the same collisions as seen from the
perspective of both swarm particles and neutral molecules must at least be internally consistent.
The measure of this consistency is the anisotropic ‘echo’ left in neutral rotational states as the
swarm passes through the gas. In section 4 we broach the subject of non-locality in the collision
operator, albeit in a formal way. We also show, again formally, how the non-locality can lead
to corrections in both drift velocity and diffusion coefficients, in a manner reminiscent of the
origin of explicit corrections due to ‘reactive collisions’ [14].

2. Brief review of standard kinetic theory of swarms

2.1. The generic kinetic equation

Analysis of swarm experiments to extract cross sections and interaction potentials generally
proceeds via a kinetic equation of the form

(∂t + c · ∇ + a · ∂c) f = −J ( f ) (1)

in which f (r, c, t) is the swarm particle distribution function in phase space (r, c), a = eE/m
is the acceleration suffered by a particle of mass m, charge e in an external electric field E
and J ( f ) is the collision term, i.e., the rate of change of f due to swarm particle–neutral
molecule collisions. For the swarm problem, densities are extremely low, electrons do not
interact with each other and any Pauli blocking is assumed negligible. Therefore J ( f ) is
linear in f . The best known kinetic equation is due to Boltzmann, who in 1872 formulated
an operator JB( f ) describing classical, elastic collisions between point particles. That and
various approximations to it, including the differential operator for very light particles, has
been successfully applied to study electrons and ion swarms in monatomic gases [8, 14]. For
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molecular gases, however, inelastic collisions must generally be accounted for and other forms
of collision operator must be used [8–10, 14]. In any case, physically measurable quantities
are determined from ‘moments’ of the distribution function, e.g., the number density

n =
∫

f (c) dc (2)

and average velocity

v = 1

n

∫
c f (c) dc. (3)

For quantum systems, f represents a Wigner distribution density matrix and averages involve
an additional trace over the relevant indices.

2.2. Electron swarms: semi-classical and quantum collision operators

Present day analysis [8, 9, 14] of electron swarm experiments is based largely on the Wang-
Chang, Uhlenbeck, de Boer (WUB) collision term JWUB [15, 16]:

JWUB( f ) =
∑

v j,v′ j ′

∫
[ f (c) f v, j

0 (c0) − f (c′) f v′, j ′
0 (c′

0)]gσv j,v′ j ′
(g, ĝ · ĝ′) dĝ′ dc0, (4)

and its approximations for low mass ratios [14]. Here (v, j) denote vibrational and rotational
quantum numbers respectively describing an internal state of the neutral molecule, while
σv j,v′ j ′

(g, ĝ · ĝ′) is the differential cross section for the collisionally induced transition
(v, j) → (v′, j ′). The latter depends upon energy and the angle between incident and post-
collision relative velocities, g and g′ respectively. If the neutral gas has temperature T0 and
number density n0, the distribution of neutral velocities c0 and internal states v, j is governed
by a Maxwell–Boltzmann distribution

f v, j
0 (c0) = n0

Z
exp

(
−εv, j

kT0

)
w(α0, c0),

where Z is the partition function, εv, j the energy of a molecule in vibrational state v, rotational
state j and

w(α0, c0) ≡
(

α2
0

2π

)3/2

exp

(
−1

2
α2

0 c2
0

)
,

where α2
0 = m0

kT0
. In this model, there is no mention of angular momentum orientation or

projection quantum numbers m j . Moreover, the collision operator is local, in the sense that it
involves the distribution function f (r, c, t) only at the point r in question and otherwise does
not depend explicitly upon position. Conservation of particle number follows from the fact
that ∫

JWUB[ f (r, c, t)] dc = 0 (5)

and further moments with respect to momentum mc and kinetic energy 1
2 mc2 correctly represent

the rate of momentum and energy transfer between swarm particles and neutral molecules
respectively. On the other hand, taking the moment of equation (4) with the angular momentum
vector r × mc yields only r × ∫

mcJWUB( f ) dc and produces no information whatever about
transfer of orbital angular to rotational angular momentum. This is a point of major concern,
and is amplified in what follows.

It is interesting to note that collisions of electrons with molecules, involving rotational
excitation of the latter, are generally governed by non-central forces and this holds too of
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course for diatomic molecules such as hydrogen [18]. In general, collisional effects enter into
J ( f ) through scattering amplitudes av j,v′ j ′

m j ,m j ′ (g, g′), which for non-central forces depend upon
g and g′ separately. However, in JWUB, these appear only as sums of their squares through the
cross sections σ (see equation (7) below) and hence only one scattering angle χ , defined by
cos χ = ĝ · ĝ′, appears. To this extent, JWUB cannot differentiate between central and non-
central forces. Furthermore, JWUB treats rotational excitation, not as a vector process involving
exchange of orbital angular momentum of the electron with rotational angular momentum of
the molecule, but as simply another scalar excitation process, involving energy exchange only.
There is no distinction (apart from in the actual magnitudes of energy exchanges) between
rotational, vibrational or even electronic excitation as far as the WUB equation is concerned.
Indeed, it is not clear physically how rotational modes can even be excited in collision operators
like JWUB which are assumed to act at a point in space only (local operator), given the general
problems this class of operators have with angular momentum conservation. The bright point
in all this is that JWUB does furnish cross sections for pure rotational excitation in H2 which
are in good agreement with theory [1, 5]. For that reason we wish to focus on ro-vibrational
collisions in what follows and our subsequent remarks on angular momentum should be taken
in that context.

Equation (4) is valid if the gap �ε between energy levels is sufficiently large that

τ �ε � h,

where τ is the average time between collisions. This is certainly true for the vibrational
levels alone, but the 2 j + 1 degenerate rotational sub-levels m j = − j, . . . , j do not satisfy this
condition and in any case cannot be considered explicitly in the Wang-Chang et al formulation.
One must go to a quantum description, e.g., the Waldmann–Snider collision operator JWS

[19–22], to treat such degenerate states correctly. Although the explicit form of JWS is not
needed for the present, we do observe that it is also a local operator, linear in f , and satisfies
particle conservation as in (5). In the Waldmann–Snider equation, the Wigner distribution
density matrix generally appears, rather than a scalar distribution function f . However, as the
electrons are considered to be structureless point particles, their corresponding Wigner matrix
is a scalar, while the Wigner matrix for the neutral molecules is diagonal in and independent of
the m-indices, since they are assumed to be in overall equilibrium with a Maxwell–Boltzmann
distribution. In this case it is straightforward to show that [16, 20, 21]

JWS → JWUB, (6)

with the additional result that

σv j,v′ j ′
(g, ĝ · ĝ′) = 1

2 j + 1

j∑
m j =− j

j ′∑
m′

j =− j ′

g′

g
|av j,v′ j ′

m j ,m′
j
(g, g′)|2, (7)

where av j,v′ j ′
m j ,m′

j
(g, g′) are scattering amplitudes. The latter can be calculated from T -matrices in

the usual way [2]:

av j,v′ j ′
m j ,m′

j
(g, g′) = 4π√

kk ′
∑

lm,l′ m′,J M

i(l−l′ )Y ∗
lm(ĝ)( jm j lm|J M)T J

v′ j ′l′,v jl( j ′m ′
j l ′m ′|J M)Yl′m′(ĝ′),

(8)

where k, k ′ are incident and scattered wavenumbers respectively and the summation over
l, m (incident orbital angular momentum quantum numbers), l ′, m ′ (post-collision orbital
angular momentum quantum numbers) and J, M (total angular momentum) goes over all
values permitted by the Clebsch–Gordan coefficients, ( jm j lm|J M) and ( j ′m ′

j l ′m ′|J M).
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Equation (7) represents a sum over final states and an average over initial states. This is
the same definition of the differential cross section as is used in ab initio quantum mechanical
calculations [2, 3] and is the same quantity as derived from beam experiments [4]. Hence, if
conditions in a swarm experiment correspond to the regime of validity of JWUB, we should
expect an inversion of the swarm data to yield directly cross sectionsσv j,v′ j ′

which are consistent
with the ab initio calculations and beam experiments. Outside the regime of validity of
JWUB, we would have to use a quantum operator such as JWS, or more likely a non-local
quantum collision operator, where the scattering amplitudes appear separately, rather than in
the combination (7). In that case, an unfolding of swarm data using such operators would
yield av j,v′ j ′

m j ,m′
j

rather than σv j,v′ j ′
. However, we could still regain the latter by substituting in (7).

What we must not do is apply JWUB outside its regime of validity, extract a cross section from
the swarm data and expect it to match the ab initio or beam derived cross section. It is quite
possible that this mistake has been made and is at the root of the discrepancy. This is precisely
the question that we address in the present investigation.

2.3. Ion swarms and classical kinetic theory

The kinetic theory of ion swarms is in stark contrast to the above, with a purely classical
analysis of rotational collisions considered acceptable [10]. However, it appears that a hybrid
semi-classical form would be needed if vibrational excitations are important, but this has yet
to be developed. The situation is also in stark contrast with classical collision operators used
in earlier kinetic theory of molecular neutral gases. It is especially interesting to note that
unlike JWUB, noncentral forces become manifest through a differential cross section which is
a function of two angles, i.e., both χ and azimuthal angle φ. Also of interest is the way in
which earlier researchers approximated inelastic, orientation-dependent collisions to make the
problem more tractable. The review by Mason [17] explains these points further.

All in all there is a wealth of information contained in the kinetic theory of both ion swarms
and classical neutral gases, but it remains to be seen just how much of this can be brought
to bear on the electron swarm problem. For the present we have chosen to pursue a fully
quantum line of enquiry and have adapted the collision operator of Waldmann and Snider to
pursue another facet of the electron swarm problem.

3. The neutral gas ‘echo’: internal consistency considerations

Given the shortcomings of JWUB and its derivatives [14] used in traditional analysis of swarm
experiments, one wonders why it has proved so successful in describing pure rotational
excitation [5]. Obviously, the treatment of rotational excitation as a scalar process in JWUB, as a
kind of a very low threshold electronic or vibrational excitation process, is somehow sufficient.
However, in view of the discrepancy that arises between swarm derived and ab initio quantum
mechanical cross sections when vibrations are excited, one must ask whether it is also sufficient
for the case of ro-vibrational excitations, i.e., rotations accompanied by vibrations. What, if
anything, distinguishes between pure rotational and ro-vibrational excitations from a kinetic
theory point of view? Note that we expect JWUB to treat pure vibrational excitations, a scalar
process involving no rotational excitation, correctly.

In this section we attempt to throw some light on this question by taking the perspective
of the neutral molecules and look in particular at the effect of the electron swarm as it passes
through the gas. We shall refer to this as the ‘echo’ of the swarm. The electric field E induces
anisotropy in the swarm velocity distribution; i.e., there are more swarm particles moving
along the field axis than in directions perpendicular to it. In collisions with neutral molecules,
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there will thus be a preponderance of orbital angular momentum in a plane perpendicular to E
and one might expect the transfer of angular momentum to rotational states of the molecules
to also be predominantly in this plane. Such physical arguments lead us to the conclusion that
there should be some collisionally induced rotational anisotropy i.e., preferential orientation
of post-collisional molecular rotational states of the neutrals in a plane perpendicular to E.
There are two observations which we now make to set the stage for what follows:

(i) At the level of the Wang-Chang et al kinetic equation, as applied to the neutrals, no such
effects can exist, given that it ignores the angular momentum aspect of rotational excitation
entirely. If JWUB is replaced by the Waldmann–Snider collision operator such effects can
indeed be generated.

(ii) From the point of view of the electrons, the existence of significant rotational anisotropy
in the neutrals may be an indication that angular momentum needs to be treated more
carefully in the electron kinetic equation and that the local Wang-Chang et al operator (4)
must be replaced by some other, non-local collision operator. In contrast to the remedy for
the neutrals, there is no such ready candidate—applying the Waldmann–Snider equation
does not produce anything new.

Of course, if collisional production of rotational anisotropy were weak, then one might deduce
that the Wang-Chang et al analysis should suffice for both electrons and neutrals, but we have
no measure of the effect, since no such investigation has ever been carried out. We emphasize
that our interest in post-collisional neutrals is only to the extent that they may provide indirect
evidence for any possible flaws in the calculation of electron properties, for it is these which are
measured in experiment and which are unfolded to obtain cross sections. This is the essence
of the logic and the motivation for the numerical study described below.

The easiest way to begin the analysis is to use the equations of change given by
Waldmann [20] or, equivalently, take moments of the Waldmann–Snider equation. Thus,
letting Â denote the operator corresponding to some physical observable pertaining to neutral
molecule internal states, diagonal in the m-indices, we can calculate ∂

∂ t 〈A〉|coll, the rate of
change due to collisions with electrons of the average value of the physical observable, as

∂

∂ t
〈A〉|coll =

∑
v j,v′ j ′;m j ,m′

j

(A j ′
m′

j
− A j

m j
)

∫
f (c)

f v j
0 (c0)

2 j + 1
gσ(g)

v j,v′ j ′
m j m′

j
dc dc0, (9)

where

σ(g)
v j,v′ j ′
m j m′

j
≡ g′

g

∫
|av j,v′ j ′

m j ,m′
j
(g, g′)|2 dĝ′. (10)

Examples of such physical observables include Jz, J 2, J 2
z . In the right-hand side of (9) we have

approximated the neutral molecule Wigner distribution density matrix by a scalar Maxwellian.
This is consistent with the basic assumption for swarm conditions whereby the neutral gas acts
as an effective heat bath and the probability of an electron colliding with a neutral molecule
that has already undergone a collision with an electron is negligibly small. The electrons have
been treated as classical point particles. Note that the scattering amplitudes and cross sections
appearing here in the equations for neutral molecule change are the same as the quantities
appearing in the corresponding electron equations of change.
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3.1. Alignment effects I: polarization

Setting A = Jz in (9), where the z-axis is parallel to the external electric field, gives the rate
of collisionally induced alignment as

∂

∂ t
〈Jz〉|coll =

∑
v j,v′ j ′m j ,m′

j

(m ′
j − m j)h̄

∫
f (c)

f v j
0 (c0)

2 j + 1
gσ(g)

v j,v′ j ′
m j m′

j
dc dc0. (11)

Simple physical arguments indicate that there can be no net rotational angular momentum
generated in the neutral gas through collisions with point particles such as electrons; i.e., we
should find ∂

∂ t 〈Jz〉|coll = 0. This is true for example if f (c) is isotropic, corresponding to zero

field. For non-zero fields, other conditions on σ(g)
v j,v′ j ′
m j m′

j
must come into play, but we do not

explore the full implications in the present work.

3.2. Alignment effects II: collisionally induced rotational anisotropy

We have already explained why there should be an anisotropic distribution of post-collisional
rotational degrees of freedom, with components of J lying preferentially in a plane
perpendicular to E. This has also been called ‘alignment’ in the literature and is measured by the
symmetric traceless part of tensors such as 〈JJ〉; see, e.g. [23]. We prefer the term ‘rotational
anisotropy’ to ‘alignment’, but are otherwise happy to adopt effectively the same measure as
in the earlier literature. If rotational excitation were isotropic, or could be treated as a scalar
energy excitation process, then we would observe an equipartitioning of the respective rates
of collisionally induced generation of rotational energies; i.e., for molecules with moments of
inertia I ,

h̄2

2I

∂

∂ t
〈J 2

x 〉|coll = h̄2

2I

∂

∂ t
〈J 2

y 〉|coll = h̄2

2I

∂

∂ t
〈J 2

z 〉|coll

or equivalently

∂

∂ t
〈J 2

z 〉|coll = 1

3

∂

∂ t
〈J 2〉|coll.

Therefore, to ascertain the departure from rotational anisotropy we set

A = 1
3 J 2 − J 2

z

in (9) and find

1

3

∂

∂ t
〈J 2〉|coll − ∂

∂ t
〈J 2

z 〉|coll

=
∑

v j,v′ j ′

1
3 [ j ′( j ′ + 1) − j ( j + 1)]h̄2

∫
f (c) f v j

0 (c0)gσ(g)
v j,v′ j ′
T dc dc0

−
∑

v j,v′ j ′;m j ,m′
j

[(m ′
j)

2 − (m j)
2]h̄2

∫
f (c)

f v j
0 (c0)

2 j + 1
gσ(g)

v j,v′ j ′
m j m′

j
dc dc0, (12)

where the total cross section for the v j → v′ j ′ transition is defined by

σ(g)
v j,v′ j ′
T = 1

2 j + 1

∑
m j ,m′

j

σ
v j,v′ j ′
m j m′

j
(g). (12′)
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Notice that if σ
v j,v′ j ′
m j m′

j
(or its integral with the distribution functions over all velocities) were

independent of the m-indices, then the identity
∑ j

m=− j m
2 = 1

3 j ( j + 1)(2 j + 1) would ensure
that the right-hand side of (12) vanishes and equipartitioning pertains. This is the situation,
for example, when f (c) is isotropic. Otherwise, general arguments (see the appendix) show
that only the l = 2 term in the spherical harmonics decomposition of the electron distribution
function f (c) = ∑∞

l=0 f (l)(c)Pl(ĉ·Ê) contributes to the right-hand side of (12). The traditional
‘two-term’ kinetic theory ( f (l) = 0, l � 2) therefore gives an expression for the right-hand
side of (12) which is identically zero in all circumstances and has no hope of picking up the
effects that we are looking for. It is of special interest here to investigate the contribution
to (12) from excitation of ro-vibrational states of H2, as compared with pure rotational states,
as the field is increased.

As a practical measure of rotational anisotropy generation,we work with the dimensionless
quantity

� =
1
3

∂
∂ t 〈J 2〉|coll − ∂

∂ t 〈J 2
z 〉|coll

1
3

∂
∂ t 〈J 2〉|coll

=
{ ∑

v j,v′ j ′

∫
f (c) f v j

0 (c0)
1

2 j + 1

∑
m j ,m′

j

{
1

3
[ j ′( j ′ + 1) − j ( j + 1)]

− [(m ′
j)

2 − (m j)
2]

}
gσ(g)

v j,v′ j ′
m j m′

j
dc dc0

}

×
{

1
3

∑
v j,v′ j ′

[ j ′( j ′ + 1) − j ( j + 1)]
∫

f (c) f v j
0 (c0)gσ(g)

v j,v′ j ′
T dc dc0

}−1

(13)

obtained from (12) by dividing through by 1
3

∂
∂ t 〈J 2〉|coll. As in (12), deviations in � from 0

indicate the importance of the contributions of rotational angular momentum in electron–
molecule collisions. A value � ∼ 1 would indicate the extreme case where all rotational
angular momentum generated in these collisions was in a plane normal to the electric field.
Such a situation might be expected to arise, for example, for very heavy ions, but for electrons
and light ions generally, and for e–H2 in particular, smaller values are expected. The interesting
thing is to see how � varies over a wide range of E/n0, as successive inelastic channels are
opened, particularly with the onset of ro-vibrational excitations. If � is very small in all
circumstances, one can be sure that the semi-classical picture is at least internally consistent,
that suppressing vector angular momentum properties from the outset is justified and that the
continued use of semi-classical kinetic theory for the purposes of unfolding swarm experiments
is warranted. If not, and especially if � were to show a significant rise during the opening
of ro-vibrational channels, then one would begin to suspect that vector angular momentum
properties are important, suggesting the need for a complete re-examination of the kinetic
equation for electrons, with incorporation of the conservation of total angular momentum.
One would then have to look in particular at the assumptions of local, instantaneous collisions,
for which conservation of total angular momentum is not possible.

We now perform a numerical calculation along these lines, by making certain simplifying
assumptions. Firstly, it is usual to neglect the thermal motion of neutrals in the inelastic
electron–molecule collision terms, by setting

f v, j
0 (c0) = n0

Z
exp

(
−εv, j

kT0

)
δ(c0)
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Figure 1. Variation of � as defined by equation (3), the mean energy ε and excitation rates Rv j−v′ j ′
with E/N for electrons in para-H2 at 77 K. The indices v and j refer to the vibrational and rotational
quantum numbers respectively while the dashes refer to the post-collision states.

in which case (13) simplifies to

� =
{ ∑

v j,v′ j ′

∫
f (c) exp

(
−εv, j

kT0

)
1

2 j + 1

∑
m j ,m′

j

{
1

3
[ j ′( j ′ + 1) − j ( j + 1)]

− [(m ′
j)

2 − (m j)
2]

}
cσ(c)v j,v′ j ′

m j m′
j

dc
}

×
{

1

3

∑
v j,v′ j ′

[ j ′( j ′ + 1) − j ( j + 1)] exp

(
−εv, j

kT0

) ∫
f (c)cσ(c)v j,v′ j ′

T dc
}−1

.

(14)

This equation can be expressed in terms of T -matrices, as shown in equation (A.6) of the
appendix. In what follows, we show the results of a calculation of � for which the following
rotationally inelastic channels only:

j = 0; j ′ = 2;
v = 0; v′ = 0, 1;

are considered to contribute to the right-hand side of (14). (Note: rotationally elastic channels,
for which j ′ = j , do not contribute to � in any circumstances.)

In figure 1 we show the variation of � over a range of E/n0 for electrons in para-hydrogen
at 77 K for which first the rotational and then the ro-vibrational channels open. Also shown
are the electron mean energy ε and the excitation rates Rv j−v′ j ′ . For the latter we have shown
for comparison the rotationally elastic situation j = j ′ = 0; v = 0, v′ = 1, plus higher order
vibrational excitation (v = 0, v′ = 2; v = 0, v′ = 3) cases. Note that the evaluation of �, like
the calculation of the electron velocity distribution function f (c) from (1) and (4), uses cross
sections calculated from T -matrices calculated as in [2]. Our observations are as follows:

(i) For E/n0 below about 1 Td = 10−21 V m2, we observe that � � 2% and can conclude
that collisionally induced rotational anisotropy is weak. We also observe that below
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1 Td vibrationally inelastic collisions are very infrequent compared with pure rotational
excitations, which are characterized by the rate R00−02. Thus there are grounds for
having every confidence in using the traditional kinetic theory analysis for extracting pure
rotational excitation cross sections from swarm data at lower E/n0. It is significant that
there is indeed good agreement between swarm derived and ab initio quantum mechanical
pure rotation cross sections—one would not expect anything else on the basis of the present
analysis.

(ii) Above 1 Td it is a different story: ro-vibrational and pure vibrational excitation, as
measured by R00−12 and R00−10 respectively, increase dramatically and � grows to around
40% at 10 Td. The onset of vibrational excitations is accompanied by strong rotational
anisotropy, indicating that one simply cannot neglect angular momentum considerations
in the analysis. It is also in this region where the swarm derived vibrational cross section
deviates so markedly from both the beam and quantum mechanically derived results, as
discussed in the introduction.

Could it be that the latter observation indicates some remarkable coincidence or does it,
albeit indirectly, imply a breakdown in the traditional kinetic theory, based on the Wang-Chang
et al collision operator, by virtue of its inability to account correctly for angular momentum?
Following the recent extensive, but inconclusive investigations of [11] in a number of other
directions, it seems that this is the only remaining possibility, if there is to be any flaw in the
kinetic theory per se. The analysis in the following section indicates how a more general,
non-local collision operator does indeed lead to corrections in transport properties.

4. Non-local collisional effects

4.1. General remarks on conservation of angular momentum, non-locality

It has long been recognized in the literature [24, 25] that only a non-local collision operator
can provide coupling between the orbital angular momentum l = r × p of the electron and the
rotational angular momentum j of the molecule, such that the total angular momentum

J = j + l (15)

is properly conserved. The non-central forces operating in electron–diatomic molecule
collisions exert a torque on the electron, i.e., cause a change in l which in turn causes the
rotational angular momentum j of the molecule to change by an equal and opposite amount.
This (semi-classically speaking) is how rotational excitation takes place. Rotational excitation
of molecules by electron impact therefore cannot be described in even a qualitatively correct
way through central forces or a local collision operator. Orbital and rotational angular
momentum would be separately conserved under a central force and, if a molecule were in a
particular rotational state, it would remain in that state forever, according to this straightforward
dynamical argument!

4.2. Formal construction of the non-local kinetic equation

Thomas and Snider [25] derived a non-local quantum collision term for a pure gas and
represented corrections to the usual Waldmann–Snider expression by the first terms of a Taylor
series expansion. Adaptation of their expression to the electron–molecule swarm situation
appears not to be straightforward. For now, we therefore focus on the formal structure
of the equations to deduce as much general information as we can without doing specific
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calculations. Thus, to account for non-local effects to a first approximation, we introduce a
gradient correction δ J ( f ) to the right-hand side of (1) of the form

δ J ( f ) = c · ∇ J11( f ) + ∇ · J12(c f ). (16)

We observe that this is the most general way of constructing a scalar from the two vectors c
and ∇ without the need to specify further details of the spherically symmetric operators J11

and J12.
For simplicity, we now approximate the distribution function through the first two terms

of a spherical harmonic expansion,

f (c) = f (0)(c) + ĉ · f (1)(c) + · · · (17)

and resolve the non-local Boltzmann equation into l = 0, 1, . . . components. For l = 0, we
have

∂t f (0) +
1

3
c∇ · f (1) +

a
3c2

· ∂c(c
2f (1)) = −J (0)

WUB( f (0)) − ∇ · (A(0)f (1)) (18)

and for l = 1, we have

∂t f (1) + c∇ f (0) + a∂c f (0) = −J (1)
WUB(f (1)) − ∇(A(1) f (0)), (19)

where

A(0) ≡ 1
3 (cJ (1)

11 + J (1)

12 c), (20)

A(1) ≡ 1
3 (cJ (0)

11 + J (0)

12 c). (21)

The quantities J (l) are operators in c-space. For example, in the limit of small swarm particle
to molecule mass ratio m/m0, J (0)

WUB is effectively the well known combined Davydov and
differential Frost–Phelps finite difference operator [23] used widely in electron swarm kinetic
theory, while J (1)

WUB is simply the momentum transfer collision frequency [8]. The remaining
operators remain unspecified at present.

The interesting features of equations (18) and (19) are:

• Inclusion of non-local interaction and noncentral forces mixes the contributions of f (0)

and f (1) in the collision terms on the right-hand side and introduces additional coupling
between the equations.

• The extra collision terms appear as gradients in space, but nevertheless influence both
drift velocity and diffusion coefficients, as we show next.

• The correction terms involving the operators A(i), i = 0, 1 in (19) and (18) respectively,
arise explicitly because of excitation of rotations, whether occurring alone or in company
with vibrational excitation. Vibrational excitational alone will not contribute to these
terms. Further, since the A(i) are ∼c, we might expect that these terms would become
more important at higher energies, although it is difficult to be definite about this without
having explicit expressions available. However, if it is true, it means that the correction
terms are small at low energies, when only rotational states are excited.

4.3. Corrections to drift velocity and diffusion coefficients

Unlike local collision operators, such as JWUB, the non-local contribution δ J ( f ) does not
integrate to zero as in (5). The collision term of Thomas and Snider [25] has this property for
example [26]. Thus scattering takes place into and out of different volume elements separated
by a finite range. Put another way, electrons generally enter and leave a region of interaction
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at two different points. This will lead in general to an effective source term in the equation of
continuity, which is obtained from (1) by an integration over all velocities c:

∂t n + ∇ · Γ = S, (22)

where Γ = nv and S is the net number of electrons entering unit volume in unit time at
position r. Naturally the total number of electrons remains constant in the volume V under
consideration; i.e.,∫

V
S(r, t) dr = 0. (23)

In the hydrodynamic regime, the space–time dependence of all quantities is assumed to be
projected onto n(r, t) and one uses the familiar density gradient expansion [14] to represent
this situation:

Γ = nW − D : ∇n (24)

S = S(1) · ∇n + S(2) : ∇∇n, (25)

where W and D are drift velocity and diffusion tensor respectively and S(i) represents a tensor
coefficient of rank i . Substitution of (24) and (25) into (22) yields the diffusion equation

∂t n + W∗ · ∇n + D∗ : ∇∇n = 0, (26)

where

W∗ = W − S(1), (27)

D∗ = D + S(2) (28)

are the effective drift velocity and diffusion tensor respectively. Since the diffusion equation is
used to interpret swarm experiments, it is the latter transport coefficients which are determined,
not W and D. This points to correction terms, non-local in origin, which must be applied to
calculate drift velocity and diffusion coefficients in order to make a fair comparison with
experiment. The situation is reminiscent of the ‘reactive’ corrections to transport coefficients
which arise, for example, due to ionizing and attaching collisions [9, 14]. However, if remarks
made in the literature [24, 25] in connection with neutral gas transport are any guide, numerical
values of the non-local corrections might be expected to be very small for the very low densities
encountered in swarms.

5. Concluding remarks

In this preliminary study we have followed the suggestion of Buckman and collaborators [4]
and taken the view that the source of discrepancy in the vibrational cross section of H2 could
lie in the kinetic theory analysis. We have identified an area of fundamental concern associated
with the treatment of angular momentum and rotational excitation in the semi-classical WUB
kinetic equation (and its variants), used in modern day analysis of electron swarm experiments.
Our line of enquiry has taken us to an investigation of the Waldmann–Snider quantum kinetic
equation. Taking the perspective of the neutral molecules and considering post-collisional
effects, we have derived an expression (14) measuring the importance of including angular
momentum considerations in rotational and ro-vibrational excitations. Nonlocal effects were
then considered in a formal way and we have derived corrections to both drift velocity and
diffusion coefficients.

A line of enquiry parallel to that of the present paper has been followed by White et al
[11], who subject the traditional approximations and techniques of solution of the semi-classical
kinetic equation to minute scrutiny and find nothing untoward. The present paper on the other
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hand is far more radical in scope and questions the very integrity of this kinetic equation. Before
any definitive statement can be made, however, estimates of the magnitude of the non-local
correction terms must be carried out, but this is a long term project.

Finally it is worth looking back three decades or so, when controversy similar to the
present one concerning H2 surrounded the momentum transfer cross section for He. That this
was eventually resolved in favour of the swarm derived values can, in the context of this paper,
be taken as confirmation of the validity of applying a kinetic theory based upon Boltzmann’s
classical elastic collision operator to monatomic systems. Further investigation, whether along
the lines suggested in this paper or otherwise, is required to confirm that the Wang-Chang et al
operator (4) enjoys similar validity for molecular systems.
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Appendix. Expression of the anisotropy factor in terms of T -matrices

In order to compute numerical values of the rotational anisotropy parameter � as defined
by equation (14) we must evaluate certain integrals of squares of scattering amplitudes over
scattering angles. However, scattering amplitudes are not normally calculated directly in ab
initio calculations and for practical purposes it is necessary to express these quantities in terms
of T -matrices [2]. The following gives the derivation in outline form and focuses on the special
case of the transition J = 0 −→ 2 only. Further details, including the expression for the more
general case, can be found elsewhere [27].

The starting point is the expression for scattering amplitude in terms of T -matrices,
equation (8) and the familiar spherical harmonic representation of the electron velocity
distribution function:

f (c) =
∞∑

λ=0

λ∑
µ=−λ

f (λ)
µ (c)Yλµ(ĉ). (A.1)

It proves convenient in the analysis to use the identity

( jm j 20| jm j) = 3m2
j − j ( j + 1)

N j
,

where N j = √
j ( j + 1)(2 j − 1)(2 j + 3). Then the numerator of the right-hand side of (14)

takes the form

1

3

∑
v j,v′ j ′

exp(− εv, j

kT0
)

2 j + 1

∑
λµ,m j m′

j

{N j ( jm j 20| jm j)

− N j ′( j ′m ′
j 20| j ′m ′

j)}
∫ ∞

0
f (λ)
µ (c)(λ)

µ Av j,v′ j ′
m j ,m′

j
(c)c3 dc, (A.2)

where

(λ)
µ Av j,v′ j ′

m j ,m′
j
=

∫
dĉ Yλµ(ĉ)σ (c)v j,v′ j ′

m j m′
j

(A.3)
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and σ(g)
v j,v′ j ′
m j m′

j
is given by (10). Upon substituting in scattering amplitudes as given by (8) and

using the result∫
dĉ Yλµ(ĉ)Ylm(ĉ)Y ∗

l′m′(ĉ) = ω(λll ′)(λµ lm|l ′m ′),

where ω(λll ′) =
√

(2λ+1)(2l+1)

4π(2l′+1)
(λ0 l0|l ′0) is a parity coefficient, we find that (A.3) becomes

(λ)
µ Av j,v′ j ′

m j ,m′
j
= 16π2

k2

∑
lm,l′m′,lm,J M,J M

i(l−l)ω(λll)(λµ lm|lm)T J
v′ j ′l′ ,v jl T

∗J
v′ j ′l′,v jl

× ( jm j lm|J M)( jm j lm|J M)( j ′m ′
j l ′m ′|J M)( j ′m ′

j l ′m ′|J M). (A.4)

This is as far as we wish to go with the most general situation, and we now limit the discussion
to the special case where the transitions are restricted to excitations from the ground state:

j = 0 = m j; j ′ = 2;
v = 0; v′ = 0, 1;

with ε0,0 = 0. Then expression (A.4) simplifies to

(λ)
µ A00,v′2

0,m′
j

= 16π2

k2

∑
l′m′,J M,J M

i(J−J )ω(λJ J )(λµ J M |J M)T J
v′2l′ ,00J T ∗J

v′2l′,00J

× (2m ′
j l ′m ′|J M)(2m ′

j l ′m ′|J M), (A.5)

where we have used the Clebsch–Gordan coefficient property

(00 lm|J M) = δl J δmM

to reduce the number of summations. The sum over the remaining m-indices can then be
expressed in terms of a Racah coefficient:∑
M,M,m′

(2m ′
j l ′m ′|J M)(2m ′

j l ′m ′|J M)(λµ J M|J M)

= (−1)λ(2J + 1)

√
2J + 1

5
W (λJ 2l ′; J2)(λ0 2m ′

j |2m ′
j)δµ0. (A.6)

Therefore in (A.2), we have the term∑
m′

j

(λ)
µ A00,v′2

0,m′
j

(2m ′
j 20|2m ′

j) = 16π2

kk ′
∑
J,J ,l′

i(J−J )ω(2J J )T J
v′2l′ ,00J T ∗J

v′2l′ ,00J
(2J + 1)

×
√

2J + 1

5
W (2J 2l ′; J2)δλ2δµ0 (A.7)

where we have used the orthogonality property∑
m′

j

(2m ′
j 20|2m ′

j)(λ0 2m ′
j |2m ′

j) = δλ2.

For this special case, the numerator of (14) as given by (A.2) is thus

− 16π2

3
N2

1∑
v′=0

∑
J,J ,l′

i(J−J )ω(2J J )(2J + 1)

√
(2J + 1)

5
W (2J 2l ′; J2)

×
∫ ∞

0
f (2)

0 (c)T J
v′2l′ ,00J T ∗J

v′2l′ ,00J

c3

kk ′ dc, (A.8)



4142 R E Robson et al

where the sum goes over all values of J, J , l ′ permitted by the Clebsch–Gordan and Racah
coefficients. The denominator can be readily evaluated and, after some algebra, we find the
following expression for the anisotropy factor (14) in terms of T -matrices:

� =
{
−

√
7

2

∫ ∞

0
f (2)

0 (c)
1∑

v′=0

∑
J,J ,l′

i(J−J )(2J + 1)

× √
(2J + 1)(20 J0|J0)W (2J 2l ′; J2)T J

v′2l′ ,00J T ∗J
v′2l′,00J

c3

kk ′ dc

}

×
{∫ ∞

0
f (0)

0 (c)
1∑

v′=0

∑
J,l′

(2J + 1)|T J
v′2l′,00J |2 c3

kk ′ dc

}−1

(A.9)

for the special case of transitions for which J = 0, J ′ = 2 and v = 0, v′ = 0 or 1, in the cold
gas approximation. The more general expression for arbitrary J and J ′ can also be derived,
but the details are lengthy, and are to be discussed in another publication.
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