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Hyperspherical coordinates are well suited for treating rearrangement processes in the strong
interaction region, and several different hyperspherical coordinates have been used successfully for
quantum reactive scattering by various research groups. However, it is well known that
asymptotically the appropriate set of coordinates a three particle systenare the three sets of
Jacobi coordinates. In this paper we show how one can smoothly connect the hyperspherical
coordinates in the rearrangement region to Jacobi coordinates in the nonrearrangement region using
tangent-sphere coordinates. This procedure reduces the computational time required to solve the
guantum Schidinger equation and eliminates the need for numerical projection. To illustrate this
method, we apply it to the FH,=HF+F reaction, comparing reaction probabilities to those from
previous benchmark calculations based on a conventional formulatior208® American Institute

of Physics[S0021-9606)0)00622-X]

I. INTRODUCTION gate through the same region twice, and loss of unitarity of
the Smatrix. In this paper we describe how to use a third set
Rearrangement and exchange processes are importantdf orthogonal coordinates—tangent sphere coordinates—to
nuclear-? atomic3~® and molecular scatterirfg? Accurate  bridge this gap via a propagation variable that continuously
theoretical treatments of such processes are paramount &md smoothly connects hyperspherical and Jacobi regions
understanding many chemical, atomic, and nuclear physicand therefore completely eliminates the need for algebraic or
problems, including three-body recombination rates for connumerical matching procedures of any kind. In addition to
trolling limitations in Bose—Einstein condensatidh!®  obviating numerical problems, use of tangent sphere coordi-
collision-induced dissociation and recombination for accu-nates results in a savings of CPU time.
rate treatment of chemical kinetitsand studying isotopic In Sec. Il we outline the quantal scattering theory in
anomalies of the upper atmosphere. They are also the key to/perspherical and Jacobi coordinates. We also detail the use
calculating cross sections for muon and positron scattring of tangent sphere coordinates to avoid the need to project the
and for e2e processé&$Many numerical methods have been scattering function in hyperspherical coordinates onto its
developed to study these processes. Prominent among theseunterpart in Jacobi coordinates. In Sec. Il we describe a
are techniques which use hyperspherical coordinates, the agtep-by-step implementation of this procedure. Then in Sec.
vantages of which have been long recognized in manyV we apply this method to the FH,=HF+F reaction, as-
contexts’ sessing its accuracy and value by comparing present results
In wave-function propagation methods for solving theto those from previous benchmark calculations based on con-
scattering equations for rearrangement collisions, significantentional formulation. In Sec. V we conclude with a sum-
practical difficulties arise because different coordinate sysmary of essential points.
tems are appropriate to different regions of configuration
space. When reactants are well separated, the set of internal
coordinates most suited to their behavior are those of the
Jacobi system. But when these constituents are in close proy- THEORY
imity, hyperspherical coordinates are far better suited to de-
scribe their physics. The point at which the gap between the |n wave-function propagation scattering methods the
hyperspherical and Jacobi regions must be bridged is whergoal is to propagate a single-varialftadia) scattering func-
there appear such difficulties as nonphysical coupling ation through configuration space into the asymptotic region
large hyperradii, the need to use different bases in differeniyhere one can extract the scatterif®y matrix by matching
sectors of the domain of the hyperradius, the need to propao known analytic boundary conditions. For rearrangement
collisions, such methods must overcome the problem that the
aElectronic mail: parker@mail.nhn.ou.edu grouping of particles in the exit channel may differ from that
DElectronic mail: morrison@mail.nhn.ou.edu in the entrance channélf, for example, the collision of an
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atom A and a diatom BC leads to an atom and a diatom, then
three possible arrangements of the constituents A, B, and C

are possible:
A+BC—A+BC, (18 t+2
—B+AC, (1b)
— C+AB. (10 " e \
To denote a particular arrangement of particles, we shall use St

indicesr for the atom of mass,. and r+1 andr+2 for the
diatom of massn., ;+m_.,. Thus for the entrance and exit
channel arrangements in Edla), =—=A, 7+1=B, and
7+2=C. Although we shall write in terms of atom-diatom t+1
collisions, the formulation presented here applies equally to
rearrangement collisiond) in any three-particle system. For
example, in electron—hydrogen atom scattering, the projec-
tile electron plays the role of the “atom” A, while the “dia-
tom” is the target hydrogen atom Consisting of proton B andF!G. 1. Mass-scaled Jacobi coordinate §,,0,) for an atom-diatom
bound electron C. system.
0,.= cos‘l(ST—ST) =cos‘1(—RT ks
S;s, R.r,
Physically, S, is the translational coordinate, which corre-
The set of internal coordinates that best describe theponds to the distance from the center-of-mass of the diatom
asymptotic behavior of the atom and diatom for a given arto the atom, and is the vibrational coordinate, which cor-
rangementr are those of the Jacobi system.J&or colinear responds to vibratiorfor dissociation of the diatom. The
motion, these coordinates reduce to Cartesian coordinateangle ® . corresponds to the orientation of the internuclear
We use mass-scaled Jacobi coordinates X edlenote a po- axis of the diatom with respect to the translational ve&ar
sition vector from the origin of a space-fixed coordinate sys-  The three coordinatesS(,s,,® ), which we shall call
tem to particler. After separation of the center-of-mass mo- the internal coordinates, uniquely specify the center-of-mass
tion, the Jacobi coordinates for the relative motion areposition of the three particles in the plane defined by the

(6

A. Jacobi coordinates

defined as system. To orient this plane in space, three additional
M XML X angles—the three Euler angles—are required. Their effect is
R=X,— itz (2a  easily included in expansion bases using Wigner rotation
Mre1TMeyp matrices(see Sec. Il F*” Our emphasis will be on the inter-
F=Xo 9= Xo1q. (2b) nal coordinates. For reactive collisions of the fofhy, there

. . ) . are three sets of internal Jacobi coordinatd$ie Faddeev
The VeCtOITT IS the Internudear axl|s Of the d|at0m, Whﬂe. approacﬁsvlg uses all three sets Simu'taneoush/_
is a vector from the center-of-mass of the diatom to the  \ass-scaled Jacobi coordinates are convenient for two

atom . _ _ _ reasons. First, they yield an especially simple form for the
The corresponding mass-scaled Jacobi coordindtes kinetic energy operator, viz,”

ands, are scaled versions & andr ., respectively:*~1® )

r, T=—5-(V§ +V?). (7a)
S,=d,R, and S=q - (3 M
7 When written in terms of the rotational angular momenjum
The dimensionless scaling factor is defined in terms of theyf the diatom and the orbital angular momentwmof the
three-body reduced mass, atom about the diatom, this expression assumes a form that is
MaMame) 12 useful for conversion to other coordinate systems,
_|ABTC 4)
'“(M) ( n2 o1 [ P 1, 1,
__2_8_ —2+—2+—2LT+—]T STST. (7b)
and the total mass of the systévh=m,+mg+mc, as mSS\9S; dsy ST S,
m m.\ 1¥2 Second, transformations between mass-scaled Jacobi co-
d,= —T( 1— VT (5)  ordinates for different arrangementsaind 7 are effected by
simple kinematic rotations of the form
These coordinates for one arrangemerdre illustrated in S S
Fig. 1. (sf, ) “R(xy.,) ST). (8a

The scale factors in Eq.3) change the lengths of the
position vectors but not their orientation. Thus the arfg§le  Here R is a 6<6 matrix which depends on the skew angle
between mass-scaled Jacobi vect®yands, is X, between arrangementsand 7' as
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Adiabatically-adjusting Principal-axis Hyperspheri¢APH)
coordinates and transform to Delves coordinates at the outer
boundary of the hyperspherical regioh.

For convenience, we choose thgz, plane and measure
the angled, from thez, axis, as illustrated in Fig. ZFrom
this point on, we assume that we have completed propaga-
tion in the three-dimensional hyperspherical region and the
transformation from APH to Delves hyperspherical coordi-
nates) This angle and the hyperradigsare related to the JS
coordinates by

S,=pcosf, ands,=psind,. (20

In three dimensions, the internal rotation angle in ld8or-
dinates is® ; this angle is common to the J&nd HS
systems. Unlike the angles. and® ., the hyperradiugp is
independent of the arrangementi.e.,

FIG. 2. Hyperspherical coordinatgsand ¢, in two dimensions and the p= \/Si-l— SiZ \/SZB-l- SZBZ \/S(Z:-I— 5(2:. (11
skew anglexg between thez. axes for arrangement channeisA and

=B. Also shown is the hypercircle of radiys The masses of the three In principle, the domain of these coordinates is
constituent particles are taken to be equal, so all three skew angles are equal

to 27/3. T
OSGTSE, 00,7, 0O=sp<co, (123
. In practice, however, the values @and 6, are limited in the
COSXT’ 7)' SIn(XT’ 7)' i
R(xy )= ’ ’ (8p) ~ nonrearrangement regions, as
T\ =sin(x, )l cogx )l .
. , ) 0<0,<0.", 0=0O =7, Osps =< ,
where | is the 3x3 unit matrix. The skew angle between P=Pmax=Pasy (12
adjacent arrangement channelsnd 7’ is the negative ob-
tuse angle defined By wherephax IS large enough to enclose all rearrangement pro-
cesses, anfl,g is the hyperradius at which one projects onto
cosy,, ,=— K and siny., .= — 1 (80) Jacobi channel bases. Later in this section, we showdgyv
roddamy Toodyd, can be reduced tp,, by matching in tangent-sphere coor-

wherem., is the mass of the atom in the arrangement othefinates.(In the rearrangement region=09 < 921&;28 allow
than the two arrangements that define the skew angle. Thf8" €xchange of any two particlgsThe value 67" is the

for yas, 7=A, 7 =B, and7'=C; this angle is shown in Fig. angle at which the atom-diatom interaction potential be-
2. The skew angles obey the symmetry relatigns=0 and ~ COmMes repulsive; the hyperradips.y iS the outer constani-

Y. ==X .. The sum of all three skew angleé must equa|contour of the HS region, beyond which we switch to an-

o0 other coordinate system. In general!® for two adjacent
arrangement channels, such&sA and 7 =B in Fig. 2, is
S v =27 and S x,.=+27 9) related to the skew angle by
7 7 aTax+ al;n’axSXT,’T_ (13)

I

Note that 7, 7, and 7 are cyclic permutationgA,B,C),

(B,C,A), and(C,B,A). In practice, we desire near equality in this equation, so adja-
cent hyperspherical regions touch at the maximum excursion
of their respective polar angles.

Jacobi coordinates are not appropriate if the atom and The determination op . requires consideration of the
diatom are in close proximity. In this region, the interactionspoint of contact between H&nd JS regions. In Jacobi co-
among the particles are strong and rearrangements takedinates surfaces of constant vibrational coordirsatare
place. More suitable for this rearrangement region are hypemalf-cylinders of radiuss,, as shown in Fig. 3. The maxi-
spherical coordinates. A variety of hyperspherical coordi-mum radiuss!®is determined by the vibrational wave func-
nates are used in nuclebf, atomic3™® and molecular tion of the diatom in arrangement the domain G<s.
scatterind~® and one can easily transform from one hyper-<s"®must encompass the rangespfwhere this function is
spherical coordinate system to another using rotational frameonzero. These wave functions appear in the expansion bases
transformations, since all use the same hyperradius. Here wer the system wave function, and it is important that there
choose Delves hyperspherical coordindfeshich are par- be no overlap of basis functions for adjacent arrangements;
ticularly convenient for describing motion in each arrange-see Fig. 4. Since the maximum hyperradius for a given ar-
ment channel. For colinear motion, the Delves hyperspherirangement is tangent to the Jacobi cylinders, we must deter-
cal coordinates reduce to the usual plane polar coordifiatesnine p,, for each arrangement so as to ensure that adjacent

[In practice, we begin propagating the scattering function ircylinders do not overlap. So, although strictly speaking the

B. Hyperspherical coordinates
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Za = SA

SeN——7Ao2

FIG. 5. A planar slice of the JSand HS systems for the three rearrange-
ment channels of an atom-diatom system with three equal masses. The
thick solid line indicates a possible trajectory for propagation of the scatter-
ing function into the asymptoti¢Jacobj region for channet=B. The gap
between the hyperspherical and Jacobi regions arises because the hyperra-
dius is tangent to the Jacobi contour of minim@Bp at only one point.

FIG. 3. Jacobi coordinatesS(,s, 0 ) for the three arrangement channels Procedures for bridging this gap are discussed in the text.
of an atom—diatom system with three equal masses. The translational propa-

gation variable isS,, the vibrational coordinate is,, and the angle be-

tweenS, ands; is O .. Surfaces of constarst. are half-cylinders of radius 1

s,, and surfaces of constaBt are half-planes normal to the axis. pmax_
AB —

V(SA™)?+ 253755 ™ cosxap + (55792 (149

SinXAB

(Here and in other figures, the coordinate labelsy,, and

z. do not refer to the positions of the particles. Rather, they
represent three orthogonal coordinates appropriate to the ar-
rangementr and the region under discussion. Thus, in JS
coordinatesz,=S,, Xx,=s,, andy,=0_.) To obtain a
single outer boundary for all three H&gions, we choose

Pmac=MaX pag . PBE PAC) - (14b

This choice leads to the lower bound pnn Egs.(12b).
Equations for transforming between Jacobi and Delves
hyperspherical coordinates are given in Table I. These are
‘iiﬂizi; the familiar polar coordinate transformations, which can also
. be expressed as a conformal map. Volume elements for these
systems, which are required for evaluation of matrix ele-
. ments, appear in Table II.
repulsive Figure 4 shows the Delves H8oordinates for=A for
. an atom—diatom system of three equal masses. Were we to
potential include the full range of HScoordinates, Eqs(12a, the
contours of constant would be hemispheres of radigsBut
in order to ensure zero overlap of vibrational wave functions
in adjacent regions, we choogd'®=m=/3. (In HS, coordi-
nates, the vibrational distancegdsin 6,~p6, for small polar
anglesd..) This choice excludes arrangements in which all
three interparticle distances are large; here the potential
V(p,0,.,0 ) is repulsive and the wave function for the sys-
tem can be assumed to be zero.

hyperradii in Eq.(11) are independent of arrangement, in

practice we obtain three different hyperrag@fs”, pge", and
pae. For example, for the adjacent regions shofim the

plane in Fig. 2 we have

ZA

g

FIG. 4. Hyperspherical coordinatep,@,,® ) for the three arrangement . . L .
channels of an atom—diatom system with three equal masses. The transfe- Solving the scattering equation in Jacobi and
tional propagation variable is the hyperradjusThe Delves hyperangle is hyperspherical coordinates

0., and® . is the angle between the Jacobi vectSrsands,. The maxi- . .
mum values of the angleg, are limited so as to exclude the repulsive In scattering methods based on the close-coupling ap-

potential region, here illustrated for arrangement channels and =B. proximation, the many-body Schiimger equation for the
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TABLE |. Relationships between JSHS,, and TS coordinates. The top entry in each block is the propaga-
tion variable; the bottom entry is the “vibrational” coordinate.

Region Hyperspherical Tangent sphere Jacobi
) +wi(1+ 2
Hyperspherical p=p p= Pimau W10 Do) p=\St+s?
1+UW, o
0.=0 b=tanl—y 6,=tan™} ST)
T . U7W%—+Pma>&1+vzwi) T S,
p COSO.~ pmax S~ Pmax

Tangent sphere  p

= v,=U, v=
" PP+ Pinax— 2P Pmax COS O, " (S pmad)

 P°F Poax 2P PrmaxCOSH, . S (S e

7 psing, We=We T s,
Jacobi S,=p cosé, =UT—WE +p S5,=S
T T 1+U§W§ max T T
. w,
S,=psing, S7.=m S,=S,;

atom-diatom system is reduced to a set of coupled singlehird in Sec. 11D) The most widely used approach is to
variable differential equations by expanding the system wavenatch on the surface of the hypersphere of maximum
function in an appropriate basi$The functions in this basis radius’ A circle on this hypersphere is highlighted in Fig. 6;
are constructed from complete sets in the relevant coordithe actual matching surface is obtained by rotating this curve
nates. In the JSregion, the basis for expansion of a wave around each of the. axes. In practice, rather than transform
function in the body-fixed reference frame consists of prodthe scattering function ai,, to JS coordinates and propa-
ucts of vibrational wave functiorﬁvjjs)(sT) for the diatom in  gating further, one simply propagates in H8oordinates
arrangement 7 and associated Legendre polynomialsfrom p=0 to a hypersphere of radiygs, in the asymptotic
P]-A(cosG)T) for the rotational motion of the diatomiFor ex-  region. There one projects the solution tg d8ordinates and
pansion in the space-fixed frame, the associated Legendreatches to asymptotic boundary conditions in these coordi-
polynomials are replaced by coupled angular functiongnates(see Sec. Il G Of course, the value g5, must ac-
yﬂ""(ST,éT), whereJ andM are the quantum numbers for the commodate all angle#,; i.e., this value must be in the
total angular momentund=j+L and its projection on the asymptotic region for all required values $f. This require-
space-fixed axis, and andl are quantum numbers fprand ment results in a maximum hyperradius large enough that we
L.20 just evaluate the JSscattering function on the region of the
The resulting single-particle scattering equation must béphere where the HSand J$ systems now overlap, the
propagated from the origin into the asymptotic region wherecross-hatched region in Fig. 6.
matching to asymptotic boundary conditions yields the scat- Additional difficulties with this first procedure result
tering matrix. For rearrangement collisions, this propagatiorfrom the dependence of the HS8ibrational basis functions
encounters special problems owing to the use of different
coordinate systems in different regions of configuration
space. These problems are evident in Fig. 5, which shows a ZA
planar slice(colinear plangthrough the JSand HS coor-
dinates for all three arrangements of an equal-mass system.
(The corresponding three-dimensional #8d HS contours
appear in Figs. 3 and ¥At the juncture between the J&nd
HS, systems, the propagation variable changes fpdmS, .
For each arrangement the hypersphere of radiys,.y is

‘_HSB surface

tangent to the corresponding Jacobi contour of miningim RSN XS

at only one value of the vibrational coordina#,=s,=0. w&mm&%%~

For any other angle ., there is a gap between the point "‘\\N‘E%Alwég’%%?”’#’
(Pmaxf) and the start of the corresponding ,J&gion, “%M%AMW‘Q##
SM" So if one knows the value of the scattering function ‘%QM@‘I[\W@#@

on the surface of the hyperspheremt,,, one knows the “‘\WQVW@#g
value at only a single point in the J$egion. Only at this z ""O'\\\Q\i\\\\\\\\\\\\\\“ ",/////;/////////;///### 7B
point, therefore, can one determine the scattering function ¢ “O\\\\\ /////Q##
continuously from the HSorigin p=0 to an asymptotic C v

value of the CorreSpondmg JsanSIatlonal coordlnatST. FIG. 6. One procedure for bridging the gap in Fig. 5. Solutions are matched

To .bridge the gap between the 7l;|$’ld JS regions, tWo 15 asymptotic boundary conditions in the region where the Jacobi cylinder
strategies have been proposed so’fAe shall propose a overlaps with this hyperspheteross-hatched region
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ZA

Jp matching

FIG. 8. Tangent sphere coordinates in two dimensions. For each coordinate
FIG. 7. An alternative to the scheme in Fig. 6 for bridging the gap in Fig. 5.UT (dashed curvésandw. (solid curve we show three constant-coordinate
One propagates the scattering function in,l¢Bordinates out to the planar contours: 1(thick curves, 2, and 3(thin curves.
surfaces of the Jacobi cylinders, shown by thick lines for all arrangement
channelsr. One matches to solutions in Jacobi coordinates in the region
where hypersphere overlaps these cylindersss-hatched region

spherical sectors cross the boundary and inward jrcd8r-

o . ] dinates. Moreover, this technique does not guarantee unitar-
on p, a consequence of the limited domain of the “vibra- ity of the resultingS matrix; in fact, the extent to which the
tional” coordinate, in Eq. (12h). This dependence results rggytingS matrix violates unitarity varies with the scattering
in a nonphysical channel coupling at large hyperradii thanergy. Finally, it is not clear how to adapt this strategy to
requires the inclusion of basis functions for closed vibra-ormylations based on variational methods, such as the Kohn
tional channels. Worse, it requires subdivision of the domain,ariational method? These difficulties have prompted our

of the hyperradius into sectors, each of which has a differenfroduction of a third strategy based on tangent sphere co-
basis. One must therefore change bases at each sector bouggyinates.

ary, a requirement that demands considerable memory and
significant CPU time. Strategies for accommodating this de- _
mand are sector adiabatic badetiabatic by sector baséé, D Tangent sphere coordinates

and smooth variable discretizatiéh. Tangent sphere coordinates appear in the compendium
The second proposed way to bridge the gap between thef coordinate systems by Moon and SperféefWe have
HS, and JS regions is to match scattering functions on Ja-replaced their variabla by 14v, andv by v .; we have also
cobi planes rather than on the hypersphere. This approachifted their coordinate by p,ay.) For each arrangement
illustrated in Fig. 7, entails propagating in H8oordinates  the TS system is an orthogonal coordinate system whose

out to the \]S plane that COI’reSpondS to the minimum Valuecoordinates l(T’WT’®T) are related to rectangu|ar coordi-
of S;. On this plane, the HSscattering function is matched pates by

to regular and irregular solutions that have been propagated

. - g WT
inward from the asymptouc_ value &, . I.n addition to the (8.)y=X,=—5—r—C0S0 _, (153
problems discussed in relation to matching on a hypersphere, vews+1
this alternative suffers from the fact that, as shown in Fig. 7,
the distance from the origin to the Japobi matching plane (Sr)y=y7=—2—W27—Sin®T, (15b)
depends on the hypersphere angle This dependence re- vewr+1
quires one to propagate through the cross-hatched region 2
. . . . v, W
twice, outward in H$ coordinates where multiple hyper- S,= ZT=02W—2+1+Pmax- (150

TABLE II. Volume elements and are lengths along the propagation variabldNote that® _, the rotational angle of the diatom, is common
q; for the J§(q,=S,), TS.(q;=v.), and HS(q;=p) coordinate systems. t0 the TS, JS,, and HS systems.
The nature of these coordinates is most clear in the

Region Volume element Zi‘éﬁi?}giﬁd (x-,2;) plane obtained from Eq¢15) by setting®,=0. In
Fig. 8, curves of constant, are circles of radius-1/2v ,
Hyperspherical 1 )5 sird(20,)dp d6, dS, ds, Pmax—Prmin centered apnat1/2v ,; these circles are tangent to a line
WU WA Pt WD) . [ w, parallel to thez, axis atX.= pnay. The contouw .=0 is the
Tangent sphere T oA dw, dv,dS ds, wtan 1(2pmax) x, axis. Similarly, curves of constamt. are circles that are
Jacobi S282dS, ds, dS, ds, S{max)_ gfmin) tangent to the, axis atz,= ppa. In the limitw, —«, these

curves approach the, axis.
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ZA Xe=8¢

|
TS.|
Imax |
HS. : INTS
S
Ze=S
St= Imax Sglax o

FIG. 10. Hyperspherical (H$, tangent-sphere (T and Jacobi (J$
coordinates in th&z plane. The thick dashed curves delimit the, T&gion.
The propagation variable in the H&nd JS regions arep andS;. In the
TS, region, the propagation variableds (thick curve.

FIG. 9. Tangent sphere coordinates for the three arrangement channels of : : : . _
atom—diatom system with three equal masses. The translational propagatic%%ymptOtIC (J$ region. Figure 10 lllustrates such a propa

variable isv ., the vibrational coordinate i, and the rotation angle about 9ation in the &.,z;) plane, and Figs. 11 and 12 show the
thez, axis is© , . Surfaces of constant, are hemispheres, while surfaces of three-dimensional, three-arrangement analog. Beginning at
constantw,, are half-toroids. the origin, the variable varies fromp=0 to p= pyax, Where
it joins smoothly to the TSvariablev . at v .= — 1/2pax-
This variable increases through the ;T&gion until its
Constants, and constantv, contours for three- boundary aw,=0, where it joins smoothly t&, at S"™",
dimensional TS coordinates can be obtained by twirling the From here we can easily propagate to the asymptotic value
circles in Fig. 8 around the axis. These coordinates are of this variable.
illustrated for an equal-mass sytem in Fig. 9. Strictly speak- Use of TS coordinates as an intermediary between the
ing the domains of the TScoordinates are HS, system, which is physically appropriate to the situation
in which the three particles are in close proximity and
O<w,<w, and 0<v,<x, and 0<0,<2m. (16 strongly interacting, and the ,JJ&gion, which is appropriate
These limits give for contours of constanf spheres, to the asymptotic limit, completely eliminates the need for
1112 1 algebraic or numerical matching procedures such as those
» = (173  described in Sec. II C. Rather, by imposing continuity of the
.

2
4v?

X2+y2+

Z—|\p+

and for contours of constamt toroids about the origiwith

) y/
no center opening A

X2+ y2+(z,— p)2=wX2+y2. (17b

But because only the domaif,7] is physically mean-
ingful for the rotation angle® ., we restrict the maximum
value of this variable tar. Hence the resulting surfaces are
not closed. Surfaces of constantare now hemispheres, and
surfaces of constant, are half-toroids(Additional restric- r \v.
tions must be imposed because of the proximity of the TS
system to the JSand HS systems, as we shall discuss be-
low.) The coordinate origin is regained by setting=0 and
taking either limitv ,— £ . The limitw,—o is thez, axis,
and v,.=0 corresponds to the half of the,y, plane for 7B
which y.>0. To ensure that the tangent sphere region TS Zc
will not overlap the HS and JS regions, the following limits
should be used: @w,<s™®, —1/(2pma)<v,<0, and 0
<OM¥< .

FIG. 11. Bridging the gap between the Hshd JS regions(see Fig. bwith
tangent-sphere coordinates. The_T8gion for 7=B is delimited by thick
curves. After propagating the scattering function in,H8ordinates out to
Pmax, ONe transforms this function algebraically to T&®ordinates and con-

The tremendous advantage of TTG)ordinates for rear- tinues propagating with respect to the variable At v.=0, one performs

a second algebraic transformation tg d8ordinates and propagates into the

rangement collisions is that they allow us to introduce aasymptotic region. Note that the arc @t in the HS region is also the

single propagation Var_ia.ble_ that varies CqminUOUSly anontour of constant = — 1/2py, and the line of constars, in the JS
smoothly from the origin(in the HS region to the  systemis also the contour of constant=0 in tangent-sphere coordinates.

E. Solving the scattering equation in tangent sphere
coordinates
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ZA TABLE Ill. Coordinates and metric coefficients for JSTS,., and HS
coordinate systems. The volume elements for the full six-dimensional space
is s2S2\/g; see Table II.

HS, TS, JS, Generalized coordinate

Propagation variable p v, S, d;

d
0
l.]
]

!H.”"".t Vibrational” variable 6, :/,v\fE S, o
NI o e
U ] ;
\ 2
TSa - " aaE
w2
Zc o e

F. Hamiltonians and expansion bases

The kinetic energy operator in J$oordinates is cus-
tomarily expressed using spherical coordinatgs, §,), and
(s,.S,), whereS, and s, denote the polar and azimuthal
YA angles of their respective vectors. Writing the Laplacian op-
eratorsVg and Vi in Eq. (78 in these coordinates and

FIG. 12. Jacobi, tangent-sphere, and hyperspherical regions for all arrange- LT .
ment channels of an atom—diatom system with three equal masses. ThiéQtrOducmg the orbital angmar momentuin, of atom 7

curves highlight the boundaries between the, la8d TS region and be- ~ about the center-of-mass of the corresponding diatom, the
tween the TS and JS regions, both for configuration=A. Note that the  rotational angular momentuin of the diatom, and the total

rotation angle® ., which is shown in Figs. 3 and 4, is common to all three (,:mgl_”ar momentunj:j +L . the kinetic energy operator
coordinate systems. The domain of the vibrational coordinate, which is or; T

thogonal to both the rotational and translational coordinate, extends into th ecomes
classically forbidderirepulsive potentialregions far enough that the vibra- ) ) 5
tional basis functions are essentially zero at the highlighted boundaries. T h 1 J n J n 1 L2+ 1 .o S (19
= ===t —=1t= — 15,9,
21 s,S |92 a2 S Ehr|Sr

scattering function and its first derivative at these boundarie§he system Hamiltonian in J€oordinates is then
we can trivially determine thR matrix at the inner boundary .
of the TS region from theR matrix at the outer boundary of H=THV(S,.5,.0,). (20)

the HS region(see Sec. I G for details(In our implemen- To transform the kinetic energy operator into H8 TS,
Latlond a frar‘r;]e transfqrmatlon is performed at the OUteloordinates, we simply apply the chain rule using the appro-
oundary of the H3region to transform to the Delves hy- ,yiate conformal transformation from Table I. Let us denote

perspherical coprdinate)sA similarly simple procedure.con— by q, the propagation variable in any of the three systems
nects theR matrices at the outer Toundary and the inner and byq, the vibrational coordinatésee Table Il). In terms

JS, boundary. The propagated are lengths given in Table Iy aqe generalized coordinates, we can write a generic form

can be used to ensure that the propagation steps are unifoigy. s operator that pertains to any of the three syst®ms:
in each coordinate system.

As noted above, the domains in Ed.6) are limited in 72 q5q 2 1 4 P
practice by the upper limi® .= and by the proximity of T=—5 L2 > — —(g”\/ﬁ—)
each TS to its adjacent HSand JS regions. For example, e S(01,62)8(01,02) | =1 \Jg 99 99
the TS translational coordinate, is bounded as indicated in 2 o
Fig. 10 L J S(d1,02)s(d1,02)

9. 1Y, t= 2 X ;
L S(01,92)  s°(d1,02) aiaz
— <v,=<0. 18
2P max 0 (18 (21)

The JS vibrational coordinates, is bounded at the maxi- where the metric coefficieni; and Jg are given in Table
mum values™®7 by the properties of the vibrational wave Ill. The exponents in the factorg; and q] are chosen to
functions in the JSbasis, which requires that the coordinate eliminate first derivative terms from the resulting kinetic en-
w, of the TS region be limited to the same physical range.ergy operator in each system; in J8oordinates, for ex-
The vibrational coordinate ranges for the  T&hd JS sys- ample,x=#7=0, and the kinetic energy operator(9). The
tems must extend into the classically forbidden region fainverses ofgyq7 multiply the corresponding radial functions
enough that the basis functions for arrangemeate essen- in Tables IV and V. The kinetic energy operators in the,HS
tially zero. system that results from applying EQ1) is
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TABLE IV. The Schralinger equations used to define the vibrational func- gnd angular coordinates of that system. For scattering from

tions in the space-fixed and body-fixed bases. In the $§Stem, different it _ ; .
vibrational bases are used in different sectors, as discussed in the text. Fg‘P initial channelyo=(7o,70.j0.l0:JMp), we denote the

clarity, however, we suppress the sector indexpon wave function byw yo(qlqu)r leaving implicit the constants
of the motionJ, M, and the parity

Region Vibrational Schidinger equation

1@ i+ _ " p=(—1)I"". (29)
Hyperspherical {_ﬂp_z[d_ef-,— sir? 6, FVidpsin6:)—E, (p)]
X $H9(0,)=0 All channel indices containd, M, p, and the arrangement
i+ channel index. In addition, space-fixed channels are distin-
+ 7 guished by the quantum numbersj, andl, corresponding
W to the vibrational Hamiltonian,,., andL ., respectively. To
+V4 m)—Eﬁ&(UJ(ﬁﬂ&(Wr):O specify channels the body frame, we repldcby the A,
o which corresponds to projection of. on the body-frame .
+VT(S,)—E(VJ,?J¢UJ,-S(ST)=O axis. Thus in the body frame, the initial channel jg
=(70,v0,j0,Ao;IMP).2>7 The general form of the expan-
sion, for any coordinate system in either body-fixed or space-
fixed reference frames, is

h2 K
{‘ﬁ“*"mﬁ

Tangent sphere

7 A+
PR

hZ
Jacobi { T2

h? 2 #? 1 ¢ 1
= ‘(ﬂ)—&—ps sinzer{$+ 2962 a2 W(01:02)= 2 By 01) P (1,0, (25
5/2 i
+— L2+ —— Ji} p S 267, (22)  where{® (q;,q,)} is the appropriate basis.
p*cos 0, p?sit 0, 2 In each coordinate system, the functions in this basis are
and that for the TSsystem is products of vibrational wave functions for the diatom and
5 2 2.2 angular functions for either the body- or space-fixed frames.
_ _(h_>i (1+vzw?) In the body-fixed JSsystem, for example, the basis consists
2u W2 v W2+ prad 1+ 02W?) of products of functionsp!}*(s,) and associated Legendre

polynomials PjA(cos®T), which represent rotational eigen-

2 2
2g22 L & O states of the diatom. The ,J8ibrational Hamiltonian whose
X1 (Atow)T =7 5+ —— , , e I
W dvT W7 eigenfunctions appear in this basis is given in Table 1V,
2 2.9 2 2.2 along with those for the HSand TS systems.

+ , (1+vew?) S—— (l+v,2W,) -2} In the expansion o, (q;,03) in this basis, the body-
[v Wi+ pmadl L+ 07W7) ] Wr fixed JS radial functionG(ﬁé(ST) is multiplied by the scale
U W pra 1+ v2W2) factor 15,S, to cancel the factog;q,=s,S, in the JS ki-

XWz (1+02w?)2 . (23 netic energy operatofl9). Finally, the expansion is multi-

plied by the normalized Wigner rotation mattixo take ac-
The exponents in the scale factors for the H®ordinates  count of the overall orientation of the system. There results
are k=1/2 and»=0; those for the TScoordinates ar&=0  the JS expansion of the body-fixed wave function,
and n=1.
In each coordinate system, we solve the Sdhrger 5 1
equation for the scattering function by expanding the systen¥ y,(d1,02) = 2 Dyl B vsr) S
wave function in a basis that is complete in the vibrational 4 T

X G;J,?yo( S.) ¢\ (s,)P (cosO,.). (263

v'j’
TABLE V. Space-fixed expansion of the system wave funcﬁo;?) (01,92)
for HS,, TS., and JS coordinate systems. The channel indices for these The Wigner rotation matrix effects rotation into the
expansions arg=(7,v,j,l;JMp). The subscript 0 denotes the initial chan- space fixed frame and so is not required for the correspond—

nel. . . . . .
ing space-fixed expansion. Rather, the rotational functions
Region Space-fixed expansion PJ-A(cos@T) are replaced by coupled angular functions that
5 take into account rotations of the diatom and its orientation
Hyperspherical 2 mGgﬁo(P)(ﬁwﬁ(é)yd J.,"I",(AS,, 5,) in the space-fixed frame,
Y 4
(1+vi,wi,)2 (TS) - o
, M a0 AN A . &
Tangent sphere " Wi/(vy’wi/+9max+vi/mé/pmax)GT”YO(UY) ij' (ST’ST)_A,Em, CUTIATMMYjr ()Y e (S0,
x ¢1()Tjs?(wr’))}j]”\fl’(ér’ 'ér') ’ (26b)
1 P
Jacobi > KG(;%O(ST/)%J,?/(ST/) (S 8,0 where we adopt the conventions of Rose for the Clebsch—
’ Gordan coefficients! The expansion of the space-fixed

wave function in the JSbasis is
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TABLE VI. Body-fixed expansion of the system wave functivlmm(q1 ,02)

Parker et al.

TABLE VII. Values of the propagation and vibrational coordinates at the

for HS,, TS,, and JS coordinate systems. The channel indices for theseboundaries between the HSTS,, and JS regions. The third column gives

expansions arey=(7,v,j,A;JMp). The subscript 0 denotes the initial
channel.

relationships between the vibrational coordinajgesn each region for val-
ues ofq, given in the second column.

Region Body-fixed expansion

Coordinate system propagation coordinaje)(vibrational coordinated>)

2
-G 96,
Hyperspherical ; pZsin26, 7 0P &y (6071

A’ J
X P}, (cos®,)Dy, y(a, By, vr)
222
A S Y
% WZTI(UT'WZT’+pmax+Ur'W§’pmaX) e
TS A J
X ¢f}’j/)(WT’)P]{, (cos®)Dys y(ar B\ vx)

Tangent sphere

HS~TS, boundary

WT
HS; 9T™= Prmax 0.=2tarr’} K)
2pma

TS = pmn—_ L w.=2p. _ tar| =
T 1 T 2Pmax — “Pmax 2

TS,-JS boundary

Jacobi 1 TS, v(M=0 =S,
— @Y (s v (min)_ .
S.s, Cr o Sy (sr) Js S™=Prmax S, =W,
,y/ T ST
A’ J
X P (c0s6,)D3, (s Brr 72)
(min)

region, q7'®, is v!™" . Propagation and vibrational coordi-
nates at both boundaries appear in Table VII.

Imposing continuity of the scattering function at either
boundary yields

¥ 501, 92) g, - = W,,(01,92) g, = amin.

G(JS
Y'Y

W, (01,02) =2 (S;1)

5 SoSy

X B (5,0 VNS, 8,0). (260

(283

Corresponding expansions dfyo(ql,qz) in HS, and _ _ _ _ _
TS, systems are given in Table V for the space-fixed framdNSerting the generic expansié®5) and using orthogonality
and Table VI for the body-fixed frame. In regard to the, TS Of the basis functions appropriate to the left region,
basis, note that the TSibrational Hamiltonian in Table IV~ ®(01,02), yields
depends on the TSranslational coordinate, in addition to
the vibrational coordinatev,. Hence the TS vibrational
wave functions depend parametrically on. In practice,
this features causes no problems. The fsgfi®(w,)} is
complete for anywv, in the physically relevant range
—1/2pma=v,=<0. For example, by choosing,=0 in this
Hamiltonian, we can make the vibrational Hamiltonidasd
wave functiongin the JS and TS systems identical.

Gy (AT =2 Gy (AT (D[ D g, o (28D
Y

We can write this result in matrix notation as
G(a™)=0G(q™), (280

whereO is the matrix whose elements are overlap integrals
between expansion bases for the adjacent regions.
Similarly, imposing continuity of the scattering function

G. Transforming the scattering function at boundaries at a boundary yields

between coordinate systems 9 o

As discussed in Sec. Il E, the use of tangent sphere coﬁwyo(ql'qﬂ - max_ﬁquo(q“%) i (299
ordinates greatly facilitates propagation of the scattering = W
function from the origin to the asymptotic region because it gy 9
replaces computationally intensive matching procedaes =0, E‘I’yo(%,%) -
values of the propagation variable where a change of coor- =49 (290

dinate system is magldy simple matrix transformations. At
either the HS-TS, boundary or at the TSJS boundary, Note thatdq,/dq; is zero at any region boundary, because at
we merely impose continuity of the scattering functiona boundary unit vectors along, and g, are parallel. The
\Ifyo(ql,qz) and its first derivative with respect to the propa- quantity &allaql_ in (29b) is just the scale factor for the
gation coordinate);. This chore is made easier by introduc- transformation ;,q,)—(d;.,9,). Application of the ge-
ing theR matrix, which is definedin any coordinate system neric expansion of¥",, (d;,d,) and orthogonality of basis
by the matrix product functions for the left region yields a matrix equation for the
R(qy)=G(q)[G’(qy) ]~ % 27) first derivatives that is analogous to Eg8c),

Each boundary defines two regions: the one to its left G'(q™)=QG' (g™, (30

and the one to its right. The continuity conditions concernyhereQ is the matrix of scale factors at the boundary.
the propagation variable as it changes between these regions. Combining Eqs.(28¢) and (30), we obtain the desired

We denote this variable in the left region by and in the  transformation equation for thR matrix at a region bound-
right region byq, . At the HS—TS, boundary, for example, ary,

the maximum propagation coordinate for the left region,

T2, IS pmax,» While the minimum coordinate for the right

o R(a7™)=OR(G7"[Q] (3
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To complete this description we need only determine theDefining
scale factors at each of the region boundaries. We can facili- =i 38
tate implementation of Eq31) by judiciously exploiting the y =Ky (38)
aforementioned parametric dependence of the ViBra-  where Kk, =k
tional Hamiltonian onv .. If we choosev ,= — 1/2pax IN choosing
this Hamiltonian, then the basis functions in the t8d TS

.|, we follow McLenithan and Secréstin

regions are identical. The overlap matfixin (31) then re- Crrro= Oyyes Si1(i6,S,), (393
duces to the identity matrix. Moreover, since at this bound- V2w £(1),1

ary dq,/9q,;=w; 2, the elements of the matri® of scale Ay, 0= Oy,9Ky ST (1 1,S,). (39b)
factors are simply

The quantitiesatwO are real and closely related to the modi-
D fied spherical Bessel functiongsyﬂ,z, which are regular at
Y’ — the origin. The quantitiewa are also real. They are closely
related to the modified spherical Bessel functidfis, 15,
_ (HS) = M , > which decay to zero exponentially at large distarfCes.
f oi - (67) Wf z 1'(WT yaw . (32) With these conventions, we can determine khenatrix
from the R matrix (27) at S, as

2
r

1
(I)yw—

Note that for this choice of ., the vibrational coordinates
w, and 6, are related by K=(Rb'—b) }(Ra’ —a), (40)

0. wherea’ andb’ are the first derivatives af andb evaluated
W= meaxtar< E) ) (33 ats,.

If the boundary conditions given above are applied be-
fore the dying closed-channel coefficierd§,,y0 are negli-
gible, then the resultingd matrix will contain elements cor-
responding to both open and closed channels. The cross
section, however, depends only on the scattering matrix be-
fveen open channels. So only the open—open blogk of
the full K matrix contributes to th& matrix2°

so we can evaluate the one-dimensional integr@B®) with
respect to eithew,_ or 6.

At the TS—JS boundary, we choose,.=0 in the TS
vibrational Hamiltonian. This choice makes the T&hd JS
vibrational basis functions identical, and again reduces th
overlap matrixO in Eq. (31) to the unit matrix. The scale
factor at this boundary is again equalvtsz, so the matrix
elements ofQ have the same form as those in E8p). Since S=(1+iKoo) (1 —iKyo) L (41
atv,=0, the TS and JS vibrational coordinates are equal,

w,.=s_, we can easily evaluate these matrix elements in the . From theS ”.‘at“x' we calculate the transition _matnx,
JS. system. with the conventionlT =I—S, and thence the scattering am-

plitude for a transition(in the space-fixed framg
H. Calculating the differential cross section from the ) )
R matrix Yo=(70,v0:J0,l0;IMP)— y=(7,7,],1;IMp). (42)

Once the propagation described in the previous sectiol terms of elements of, this amplitude is
has reached the asymptotic region, a va#/&* in the JS
lo—14+1
> >

coordinate system, we extract tiematrix, with elements f(k,,y—Ko,¥o) = 2m
K. ., by matching the JSscattering function to the usual ’ Vk ko IM

VY
asymptotic boundary conditions, ] -
X C(jlJ;m,M —m,M)Y,’fM,mo(ko)
GD3(S)=a(S) —b(S,K. (34) .
XYim-m(Ky) T, 50 (43)

For open channels, the elementsacdndb are proportional
to the Ricatti—Bessel and Neumann functions, respecti/ely, wherek =S, denotes the scattering angle in the final state.

= 5wok}//2871?| (K,S,), (353 Finally, the differential cross section for this transition is
12c ~ o kV 2
by,'yO: 5y,y0ky anl(kysr)v (35b) I ’yOH}/(ST) - k_O | f(ky VY kO! 70)| . (44)
where the channel wavenumbley is defined by conserva-
tion of the total system enerdyin terms of the rovibrational Ill. IMPLEMENTATION
energiese, ; of the diatom as

To summarize the tangent sphere procedure and as a
guide to future applications, here we outline the implemen-
tation for reactive collisions of the type shown in EGa).
Figure 12 combines all three regions and shows the demar-

For asymptotically closed channels, the matching Condl'Cation boundaries referred to in this description.

2 ﬁZ
E:_ng+6 ﬂk§’+6vxj' (36)

UO’jO_

tions are
39 _ B (1) Choose the range of total energiéover which we re-
GWO(ST)—C(S,) d(SHK. (37) quire cross sections for comparison to experiment.
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(2

3

©)

(6)

(7)
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Estimate the number of required vibrational basis func- 4 ' ; v ' ' y ; T
tions and calculate vibrational wave functions for each
arrangement channel in the asymptotic limit using ana-
lytic basis sets consisting of Sturmian functions for Cou-
lombic systems or simple harmonic oscillator eigenfunc-
tions for molecular systems. Integrals are evaluated
using Gauss—Hermite quadrature designed to conform to

351

25+

Collision

Potential (eV)
N>

the maximum value o$, as determined by the extent of | Energy
the vibrational basis functions. y
Calculate the maximum propagation radius in the, HS 15p/ e
region, pmax, from Egs. (14). Using vibrational wave Energy
functions ¢{/%/(6,) at pmax, We check convergence of T 1

the vibrational eigenenergies with respect to the number
of basis functions, increasing the number of these func-
tions if necessary. These tests ensure that our basis is 0 e s
adequate in hyperspherical coordinatespgt, and in 0 X 4 &0 B0 1 M 10 1w

Jacobi coordinates fop,,,=<S,<c«. Since this basis is Or (degrees)

also adequate at the HSTS, and HS—JS boundaries, FIG. 13. Colinear barrier heights for rearrangement processes illustrated by

it is comparably accurate over the entire ,TS;gion, a two-dimensional “slice” through the T5a potential surfadé(p
Y <y <0 =6.9750pn="2,xapn) Of Brown et al. in APH coordinates at a hyperra-
20 max=v,<0. dius of py=6.979.

Generate contour plots of the interaction potential in hy-

perspherical coordinates at several values of the hyper-

radius. From _these we_ estimate the initial valug dor IV. APPLICATION TO F+H, SCATTERING
the propagation, making sure that all contours at that . _ .
value ofp are much higher than the maximum energy at ~ Since the F-H,=HF+F reaction continues to be the

which we will calculate cross sections. This check en-focus of both theoretical and experimental activity we
sures that for all energies propagation will begin in thechoose this system to demonstrate the effectiveness of the

tangent sphere method. In this section we compare results
Calculate HS surface functions and eigenenergies atcalculated with the tangent sphere against those from previ-
ous calculations in which we used a two-dimensional projec-

several vtaltges ob nelatrp mgx’ l.Jsmgtthe ?;]sc(;ete Vf?”.?blel tion of asymptotic Jacobi solutions onto a hypersphere of
representation, analylic basis set method, or Tinite €lez, ;2628 Pasyni= 9.58. In both calculations we used the

ment method. Using these we make the estimated stark,antial energy surface of Brovet al. (often referred to as
ing value ofp precise via the WKB approximation. We the T5a or Truhlar 5a potentj (see Fig. 13

are quite conservative in our choice of this minimum | this reaction two of the particles are identical, and we
value ofp. identify arrangement channels as=&k and B=C=H. We
Generate surface functions and coupled equations in thgerformed scattering calculations at 95 values of the total
HS, region, storing on disk matrix elements and overlapsenergy in the range 1.65eVE<2.4eV. Figure 14 shows

to be used in the transformations from one sector to aneolinear contours for this system. The dashed contour corre-
other discussed in Sec. Il C. This fairly extensive calcu-sponds to the maximum collision energy, 2.4 eV. As this
lation requires numerous convergence checks and sulgiagram showsp,,., must be greater thar6.8a, to allow
stantial disk space. This step, however, is the last onéor tunneling in the interior hyperspherical region. We evalu-
before propagation. ated the values o§™ the largest Gauss—Hermite quadra-
Propagate theR matrix in hyperspherical coordinates ture.point for e_ach arrangement channel, l_Jsing the same Vi-
from our initial value ofp t0 pma., Where we switch brational basis and parameters as in our previous

from APH coordinates to Delves coordinates. We therc@lculations?®*®these values are given in Table VIII. The
transform theR matrix function to TS coordinates using skew angles and scale factors in this table were calculated

Eq. (31) with the simplifications discussions in Sec. Il G. from the atomic masses. Using E4.4) we obtainedpmay .
S . ) =6.83. So we could use surface functions from our previ-
This initializes the propagation with respect w0,

. . ous calculatior~28in propagation through the hyperspheri-
through the TS region. At the outer boundary of this cal region, we choosg,,.,=6.975,, a value at which a

region, we again implement the equations of Sec. Il G tqyrejously calculated surface function was availdbié®
transform theT matrix into the JS region. Further Figure 15 shows hypersphericgPH) contours for a con-
propagation with respect 8§, yields the scattering func-  stant hyperradius of 6.825. Figure 13 shows that for this
tion at a value of this coordinate large enough that theyalue ofp,,,, the barrier height for scattering from channel A
matching equations of Sec. IIH are applicable. Thisto channels B or C is 3.9 eV with a width of A§at the
yields theK matrix, from which we calculate the desired maximum collision energy, and the barrier height from chan-
Cross sections. nel B to C is 710 eV with a width of 5&} at the maximum

classically forbidden region.
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F + Hy (0=6.975 ag) F + Hy Collinear Plane

l.o T T I I | I 1T I 1'0 LI I | I LENLELEL I LI I | I LENLELL
0.5 - adn m
o.0f H =0 B
X ] —0.5 E
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X

FIG. 15. Potential energy contour plot of the T5a potential energy surface of
FIG. 14. Potential energy contour plot of the T5a potential energy surface oBrown et al? for the colinear configuration. The white areas are classically
Brown et al. in APH coordinates at a hyperradius pf,.,=6.97%,. The forbidden regions where the potential energy is greater than the maximum
white areas are classically forbidden regions where the potential energy igollision energy of 2.4 eV. The outer circle is the hyperradiygm of our
greater than the maximum collision energy of 2.4 @dlid circle. previous calculation®-2 The inner circle is the hyperradiysns, for cur-

rent implementation of the tangent-sphere technique.

collision energy. These values ensure that tunneling in the

tangent-sphere and Jacobi regions is negligible at all scattefo calculations are identical to graphical accuracy. Since
ing energies of interest. the size of the hyperspherical region in the present calcula-
We propagated the coupled-channel equations fpom tions is roughly half that in our previous stuéf7;?® the
=2.280 10 p=ppmax I the hyperspherical region using APH present calculations require roughly a factor of 2 less com-
coordinates. We then applied the unitary transformation tqutation time. More importantly, the current procedure com-

transform theR matrix from APH to Devles coordinates. pletely eliminates the matching procedure required in other
Using Eq.(31) to evaluate th&k matrix in the tangent-sphere methods.

region, we then propagated through that region. Finally we

again used Eq(31) to evaluate theR matrix in the Jacobi

region, after which we propagated through that region fromy coNCLUSIONS

S,=pmax 10 208,, at which we applied asymptotic boundary

conditions. The tangent-sphere method eliminates the need for com-
Figure 16 shows reaction prObab”iB’?fH(ui ,Ji)(E) for plicated matching.procedures such as those in hyperspherical

scattering from initial statex( ,j;)=(0,0) into a final vibra- methods for_ treatl_ng exchange or rearrangement processes.

tional manifold v (summed over all final open rotational To accomplish this, we use tangentisphere C(_)ordlnates to

states as a function of the total enerdg(eV) for the FrH, smoothly propagate from hyperspherical coordinates to Ja-

system with total angular momentud=0. The curves cor- cobi coordinates. The relationships between these coordi-

respond to the present tangent sphere calculations and thgtes are s_hown in Figs. 11 and 12 and collected in Tab[e .
dots to our previous resulté=2 Clearly, results from the For convenience we have gathered most of the key equations

required to implement this approach in tables: the scattering
equations in Table IV, expansion bases in Tables VI and V
TABLE VIII. Parameters used in the present tangent-sphere calculation@nd boundary values of the propagation variable and vibra-
and in a benchmark calculations based on a two-dimensional projection dional coordinate in Table VII. We hope that these tables
asymptotic Jacobi solutions onto a hypersphere of ragliys=9.5a,. along with the step-by-step implementation scheme in
Sec. Il will facilitate other applications of tangent-sphere

Parameter Channel A Channel B or C .

- coordinates.
'gtom'c mass(amu 1?-2334032 116000782503 In addition to eliminating the need for numerical match-
xT 23309960 16211932 ing between the hyperspherical and Jacobi regions, the ap-
w. (a.u) 2 00534 10-2 188555 102 pro_ach described herein redgces the maxi.mum dista_mce to
I'e (20) 1.40112 1.732517 which one must propagate in hyperspherical coordinates,
Vimax 1 1 which is now limited to the range of hyperradii over which
J max 12 31 rearrangement and/or exchange processes occur. Outside this
N X(io%ﬁ () Z'gg 23?; rearrangement region we use simple Jacobi coordinates to
gﬁgi(ao) " 20 20 propagate to a sufficiently large distance that all coupling

and phase contributions are negligible. In addition to increas-
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