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We have extended our variationally determined nonadiabatic polarization potential [Gibson and
Morrison, Phys. Rev. A 29, 2497 (1984)] to the e-N, system and calculated elastic, total momen-
tum transfer, and rotational excitation cross sections. This model potential, which requires no
scaling and contains no adjustable parameters, is presented in tabular and analytic (fitted) form for
possible use in future studies. We evaluated the static potential at the near-Hartree-Fock level of
accuracy and included exchange effects exactly via the linear algebraic method of Collins and
Schneider [Phys. Rev. A 24, 2387 (1981)]. Diverse cross sections based on this model are in excel-
lent agreement with existing experiment. We also compare various scattering quantities calculated
with our model to prior theoretical results and to newly determined numbers using two other
model potentials: a cutoff phenomenological form and the correlation-polarization potential of
O’Connell and Lane [Phys. Rev. A 27, 1893 (1983)].

I. INTRODUCTION

Nitrogen is a much-studied molecule. For decades,
theorists have probed the structure and spectra of N, as
well as its behavior in a variety of scattering processes.
Interest in electron collisions with this molecule is
heightened by the importance of low-energy e -N, cross
sections to such applications as gas discharge physics,
laser kinetic modeling, and the physics of planetary at-
mospheres.! The low-energy (~2.4 eV) shape reso-
nance,>2 which induces a rich oscillatory structure in
¢ -N; cross sections, plays a significant role in such appli-
cations as the energetics of the CO,-N, laser and has
been exhaustively studied via a host of theoretical
methods.? Still, questions remain.

One of these concerns is how to include in a practical,
accurate theoretical method for calculating e-N, cross
sections the long-range polarization and allied short-
range correlation effects. Together with the bound-free
electrostatic interaction and the exchange effects that
arise from antisymmetrization of the system wave func-
tion, these effects are responsible for the shape and mag-
nitude of cross sections at energies of tens of eV or
below (see Sec. II.4.b of Ref. 4). Formally speaking, in-
cluding polarization effects seems straightforward: One
simply includes all contributing closed (i.e., energetically
inaccessible) electronic target states in the eigenfunction
expansion of the electron-molecule wave function that
reduces the many-body Schrddinger equation to an
effective one-body problem. Practically speaking, how-
ever, this strategy leads to coupled scattering equations
so complicated that they resist solution. The nature of
the difficulty is, as noted by Schneider and Collins,’ the
“multiconfigurational nature of polarization,” which
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“implies that even with the most sophisticated modern
computers and numerical methods, the effect can only be
handled in an approximate fashion.”

So it is not surprising to find in the recent literature a
flurry of activity on the problem of polarization, or to
discover that much of this activity has focused on the
e-N, system. Of particular importance are recent im-
plementations of optical-potential methods, such as the
linear-algebraic calculations of Schneider and Collins,’
R-matrix studies such as that of Burke et al.,® and pseu-
dostate techniques such as the Schwinger multichannel
method.” These studies require sophisticated,
computer-intensive matrix calculations predicated on ex-
pansions of the scattering function, the potential, or a
Green’s function.® Indeed, at the heart of these methods
is the idea of representing short-range correlation and
long-range polarization effects (at least in part) by a
finite basis of square-integrable functions. Underlying
most such studies published to date is the rigid-rotator
approximation, which, by “freezing” the internuclear
separation of the target at equilibrium, obviates the need
for coupling of vibrational states or for fixed-nuclei cal-
culations at many internuclear separations.

A different tack to the problem posed by polarization
is to conjure up a model potential. In the early days,
model polarization potentials were crude representations
of the simple, well-known asymptotic dependence, with
nonadiabatic effects mimicked by a spherically sym-
metric cutoff function that strived to approximate
intermediate-range adiabatic effects and short-range
nonadiabatic influences. Notably superior to these
heuristic models—though less rigorously founded than,
say, an optical potential-—are polarization ‘potentials
determined using the linear vibrational method, such as
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the e-H, potential of Lane and Henry,” the e-N,
polarized-orbital potential of Onda and Temkin,’® and
the present model.!! Free of parameters requiring ad-
justment to experimental cross sections, these models
face only one major problem in their implementation:
inclusion of nonadiabatic effects. Our solution to this
conundrum, which gives rise to the so-called “better
than adiabatic dipole” (BTAD) potential (see Sec. II), is
to invoke the nonpenetrating approxiination of Tem-
kin.12’13

Yet another approximate solution to the problem of
polarization is to join the known asympiotic form of the
polarization potential to an analytic fit of a short-range
free-electron-gas correlation potential. This is the stra-
tegy adopted by O’Connell and Lane!* in their study of
electron—rare-gas scattering and by Norcross and colla-
borators'™>!® in (rigid-rotator) electron-molecule scatter-
ing calculations for a variety of systems. In the absence
of results from rigorously exact treatments of polariza-~
tion, the accuracy of this or any other model must be as-
sessed indirectly, e.g., by comparisons of cross sections
from calculations based on different models and from ex-
periments.

In the present paper, we report several such compar-
isons for our BTAD potential. The primary intent of
this work is to extend our initial implenientation of this
model,!! which was restricted to electron collisions with
the (comparatively) simple two-electron H, target, to a
more typical electron-small-molecule system. With its
seven molecular orbitals of various syinmetry, and its
more acutely nonspherical interaction potential, the
e-N, system is ideally suited for this purpose. Our grail
is a tractable, easily extensible, parameter-free model po-
larization potential that one can use with confidence in
quantitative studies of vibrational excitation of diatomic
and polyatomic molecules.

After summarizing the essentials of the model and the
scattering theory in Sec. II and the computational details
in Sec. ITII, we compare various theorezical e-N, cross
sections to recently measured data. To put this model
into perspective, we also compare various scattering
quantities calculated using our variational BTAD model
with newly calculated results using two other widely
adopted model potentials (a cutoff phenomenological po-
tential and the correlation-polarization model) and to re-
sults of other recent ab initio studies. All of this ap-
pears in Sec. IV.

iI. THEORY

A. Polarization potentials

The adiabatic polarization potential is defined to be
the change in the total energy of the projectile-molecule

system due to the distortion of the target charge distri- -

bution by the scattering electron. In our procedure, a
more detailed account of which appears in Ref. 11, we
use the linear variational method to determine the ener-
gy of the electron-molecule system, trealing the projec-
tile as an additional “nucleus” (of charge —e) that is
fixed at the position of the scattering clectron. These
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molecular structure calculations are carried out in a
body-fixed reference frame®!'”!® with the origin of
(single-center) coordinates at the center of mass of the
molecule and the z axis coincident with the internuclear
axis. We shall denote the spatial coordinates of the
molecular electrons, nuclei, and scattering electron in
this reference frame by r,,, R,, and r,.

In the adiabatic approximation, the target molecular
orbitals can fully relax in the presence of the fixed pro-
jectile at r,. From these relaxed orbitals, we construct
the “polarized” wave function of the target,

(()P’(rm;re,R). Thus, for a given internuclear separation
R', the adiabatic polarization potential is simply the
difference between E g/’\’, the expectation value of the adi-
abatic Hamiltonian # 4 with respect to the polarized
wave function of the target, and E,, its counterpart for
the undistorted ground-state wave function Yolr,, ;R).
That is, with unperturbed energy

Eolr,; R)={yo(1,;R) | F 4| do(r,3R)) (1)

and perturbed energy
EP (s R)={YPUt,50,,R) | H 4| 9Px,51,R)) ,  (2)
the adiabatic polarization potential is

Voot R)=EP(r,;R)—Eo(r,;R) . 3)

In these expressions, the adiabatic Hamiltonian H 4
which describes the system with the scattering electron
fixed at r,, is simply :

7?A(rm;re,R)=f££§)(rm;R)+Vem(rm;re,R) , 4)

PaS
where # 2 is the electronic Hamiltonian of the molecule
and V,, is the electron-molecule interaction potential

energy!’
N, W,
e 1 n VA
Vem(Tr3te, R) =S s B _‘;{ I - (5)
e (+4

i=1 a=1

Ire_ril B

In Eq. (5), N, and N, are the number of electrons and
nuclei in the target, and Z, is the charge of the nucleus
located at R,,.

Asymptotically, the adiabatic polarization potential
(for a D ,; molecule) reduces to the simple analytic form

ap(R)  ay(R)

A . -
Vpol(re,R) 2re4

P,(cosb,) , 6)

Fp—>0 27':

where ap(R) and a,(R) are the spherical and nonspheri-
cal components of the polarizability of the target at in-
ternuclear separation R. One can derive this asymptotic
form from the second-order correction to the system en-
ergy, as determined via time-independent perturbation
theory?®?! by treating V,,, as a small perturbation due
to a stationary electron located in the asymptotic region.

By contrast with this perturbative viewpoint, our
procedure—in which V24, is determined as the
difference (3) between two energy-optimized
functionals—includes contributions from terms of
higher-than-second order in the interaction potential

Vem. Nearer the target, where V,, is comparatively
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large, these higher-order corrections can become impor-
tant.??> Hence, we expect a variationally determined adi-
abatic polarization potential to be more accurate in this
region than one obtained from second-order perturba-
tion theory, although both potentials should reduce to
(6) far from the target.

The adiabatic approximation is predicated on the as-
sumption that the target electrons respond adiabatically
to the motion of the scattering electron, i.e., that the
molecular charge distribution adjusts immediately to
changes in the instantaneous position of the projectile.
This approximation is valid for slow (low-energy) col-
lisions except near the target, where the static-exchange
interaction is strongly attractive and the “local velocity”
of the scattering electron becomes comparable to that of
the bound electrons. So if the projectile is near the tar-
get, then the response of the molecular electrons is not
adiabatic, and Vl;"o] [Eq. (3)] overestimates the true effects
of polarization.

Within this picture, one can identify three ‘“‘regions”
of the polarization interaction depending on the distance
of the scattering electron from the target. In the outer-
most (asymptotic} region, second-order perturbation

_theory is valid, and the polarization interaction is given
by the limit (6). For the second (intermediate) region,
the adiabatic approximation is valid, but contributions
from terms of higher-than-second order in V,,, should be
included in V:ol- Finally, in the near-target region, V:ol
overestimates polarization effects, and nonadiabatic
corrections must be taken into account.

One can use a variety of strategies to deal with these
nonadiabatic effects. A particularly simple (though
crude) method is a semiempirical approach based on the
known asymptotic form (6). In this phenomenological
polarization potential, short-range nonadiabatic effects
are mimicked by multiplying Eq. (6) by a spherical cutoff
function C(r,), viz., ’

yBien (s, R)=C(r,) [— a;(r?) - az}f?) P,(cosd,) | .
N

The spherical cutoff function is usually represented as
C(re)=1—exp[—(re/rC)P] , (8)

where p and r, are adjustable parameters. For electron-
molecule collisions the power parameter p is usually
chosen as p =6, and the cutoff radius », is usually
“tuned” (see examples in Ref. 3) to bring calculated
cross sections into agreement with an experimentally
determined feature of the scattering, such as a shape res-
onance. The cutoff function (8) approximates nonadia-
batic effects in an ad hoc fashion by smoothly removing
the polarization interaction when r, <r.. Prior studies
of polarization potentials, however, have shown that for
some systems, the adiabatic potential VPA;,I deviates
significantly from Eq. (7) in the intermediate region,
where the adiabatic approximation is accurate.?>?

By contrast, we include nonadiabatic effects via a non-
penetrating approximation. Essentially, this approxima-
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tion amounts to “turning off”’ the Coulomb interaction
between the projectile and the bound electrons whenever
the former is inside the charge cloud of the latter. This
gambit yields a polarization potential that is free of ad-
justable parameters. The idea of using such an approxi-
mation to incorporate nonadiabatic effects originated in
the polarized-orbital (PO) theory of electron-atom
scattering.'”>? Hence it is important to emphasize that
our polarization potential is not based on a PO treatment.
Our realization of this approximation for the structural-
ly simpler e-H, system is described in detail in Ref. 11;
here we shall merely sketch the basic idea.

To implement the nonpenetrating approximation, we
modified the POLYATOM molecular structure code,?*
which we use to evaluate the perturbed and unperturbed
energies (1) and (2), by altering the subroutines that cal-
culate matrix elements of the aforementioned Coulomb
interaction |r—r,| between two basis functions. In
these subroutines, we multiply the adiabatic Hamiltonian
(4) by a step-function cutoff that “switches off”’ this in-
teraction for target charge density outside the radial po-
sition of the projectile, r,.

When the bound-free Coulomb potential is subjected
to the usual multipole expansion, the (nonpenetrating)
matrix element of this potential between two basis func-
tions becomes a sum over terms identified by the Legen-
dre polynomial P, (cosf), where 8 is the angle between r
and r, [see Egs. (21)-(24) of Ref. 11]. Consistent with
our earlier implementation of the variationally deter-
mined nonpenetrating polarization theory, we have re-
tained only the dipole (A=1) term in this sum. This
simplification leads to the present “better-than-adiabatic
dipole” polarization potential.

Thus we replace the standard multipole expansion of
1/]r—r, | by the cutoff dipole form

r
{ —c0s0,, r<r,

1 )
r—r
| ‘| 0, r>r,, ©

where r is the coordinate of a bound electron. To com-
plete the evaluation of the matrix element of this poten-
tial between (Cartesian Gaussian) basis functions #,(r)
and 7,(r), we expand each in spherical harmonics, e.g.,

ns(r)=%z a, (NYM®) , (10)
Lm

and reduce the integration over r in the matrix element
to a sum of angular terms and radial quadratures. Since
the electronic configuration of N, includes occupied o,
o,, and 7, orbitals, we must evaluate the expansion
coefficients in Eq. (10) for s-, p-, and d-type Cartesian
Gaussian functions. Evaluating these integrals analyti-
cally and generalizing our computer programs to accom-
modate the increased range of orbitals and basis func-
tions were the major steps in extending this method to
molecules such as nitrogen.

In Sec. IV we shall compare our BTAD polarization
potential and scattering quantities calculated with it to
those determined by Onda and Temkin!® using a PO po-
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tential. Because the PO method is quite similar in some
respects to our approach, it is worth briefly adumbrating
the differences between the two strategies. Like the
present approach, the PO method is based on the adia-
batic approximation, retains only the dipole term in the
expansion of the bound-free Coulomb potential, and ac-
counts for nonadiabatic effects via the nonpentrating ap-
proximation. Unlike the present approach, the PO
method further implements first-order perturbation
theory to solve for the polarized orbitali and, in the ap-
plication of Onda and Temkin,!® replaces the exchange
terms in the equations for these orbitals by a local free-
electron-gas model exchange potential®>~2® that is scaled
at each R for each orbital so as to bring the induced mo-
ments ag(R) and ay(R) into agreement with results of
other calculations (see Table IIT of Ref. 10).

Onda and Temkin!® used their PO potential to calcu-
late vibrational excitation e-N, cross sections by solving
two-dimensional fixed-nuclei (FI) scattering
equations—replacing the nonlocal exchange terms by a
scaled free-electron-gas model potential—-using their
noniterative partial-differential-equasions (PDE)
method.? Subsequently, Weatherford et al. 30 extended
the PDE method in the FN approximation to incorpo-
rate exchange terms exactly, eliminating the need for a
model exchange potential. In their scattering calcula-
tions (at R =2.068ay), these authors altired the PO po-
tential of Onda and Temkin,'® multiplying it by a cutoff
function of the form (8) with the power parameter p =2,
and chose the adjustable cutoff radius ». to position the
211 shape resonance at 2.39 eV, a value consistent with
prev1ous studies.’>?%3! In Sec. IV A, we shall compare
the PO potential, which we shall denote Vg;lo’, to the
present variationally determined, paramster-free BTAD
model.

B. Scattering theory

In Sec. IV we report-integrated, differential, and rota-
tional excitation cross sections for low-energy e-N,
scattering. To facilitate comparison w.th results from
other theoretical studies—and as the first step towards
calculations that include vibrational effects—we evaluate
these cross sections in the rigid-rotator approximation,
fixing the internuclear separation of N, at R =2.068a,.

The scattering calculations are based on the body-
frame (BF) fixed-nuclei (FN) formulation of electron-
molecule collision theory®? (see Refs. 3 and 18 and refer-
ences therein). In this formulation, coupled radial
integro-differential scattering equations, expressed in
single-center coordinates, are solved for a FN scattering
function, the asymptotic behavior of which yields FN T
matrices. From these matrices we determine total in-
tegrated cross sections and, via the adiabatic nuclear ro-
tation (ANR) approximation,’2—3° rotational excitation
cross sections. In the remainder of this section we will
summarize the salient equations of this theory, identify-
ing along the way critical convergence parameters of the
calculation. .

In the BF-FN formulation, the radial scattering equa-
tions separate according to electron-molscule symmetry;
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for a homonuclear target, each symmetry is identified by
the behavior of the scattering function under inversion
of the projectile coordinate (as gerade or ungerade) and
by the absolute value of the projection of the projectile’s
orbital angular momentum along the internuclear axis,
A. Adopting the notation of Sec. III of Ref. 18, we
write the expansion in an angular basis (of partial waves)
of the BF-FN scattermg function for a given symmetry
for a body energy E, =k (in rydbergs) as

FN‘I’Eb,IO(Ie,R =

ot l'—‘

E Nufy, (re; R)YME) . (1)
l .

By substituting this expansion into the Schrddinger
equation for the projectile in the field of the ground

. (electronic) target state and projecting out an individual

partial wave, one can derive the coupled radial scatter-
ing equations

dh2__ I(l+1)
a’re2 r2

)

max
A F]
=2 3 Vir(re) ™Nufly (re;R)
&

ex
max

+2 z I Kiyrtre,r)™up ) (r5;R)ar; (12)

2 | PN
—ki | ™Nufy, (re;R)

‘On the right-hand side of these equations one finds
direct and exchange matrix elements. The former are
expressed in terms of the Legendre projections v, of the
direct potential—which includes the static and polariza-
tion components ¥V and V,,—in the expansion?$

A’max

Velt )+ Vou(t;R)="3 v3(r, )Py(cosf, ) . (13)
A

Thus, the direct matrix elements are

2 Anax

21 3 oA RIC AL A0)

21 +1

VIf\I’(re )=

(C(I'A1;00) , (14)

where we have used the conventions of Rose”3® to write
vector-coupling (Clebsch-Gordan) coefficients, such as
C(I'Al; AO).

We can express the other matrix elements in Eq. (12),
the exchange matrix elements, in terms of the single-
center expansion coefficients of the occupied molecular
orbitals of the target. Letting ¢} 5 denote the coefficient

for the ith occupied orbital (with orbital angular momen-
tum projection A;), we write this expansion as

MO
1 max

¢l (re’R _E ¢1A(re,R)Y_ ( ) (15)

The resulting exchange matrix elements are written as a
sum over the N, occupied orbitals, i.e.,
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A , Acax rA ’glfgthcc

- Ky (re,rg;R)=— 3, pres S 3 glI"TT ;AN ¢,A re,R)¢1 AR (16)
r=0 1S T i=1

where r _Qf,f{re,re} and the constants g, are products
of four vector coupling coefficients.? )

To solve the scattering equations (12) numerically we
adopt the linear algebraic method of Schneider and Col-
lins.® In this method, the coupled FN scattering equa-
tions (11) are first recast as integral equations that in-
corporate the appropriate boundary conditions via a
Green’s function. These coupled integral equations are
then transformed into a system of linear algebraic equa-
tions by imposing quadrature approximations on all in-
tegrals. The resulting numerical formulation is stable,
efficient, ripe for vectorization on a supercomputer. Un-
like many applications of this method, we do not use a
separable representation of the exchange kernel;*® rather,
we treat exchange effects directly, via the expansion in

Eq. (16).

In Egs. (11)-(16) there appear four limits on various
summations: .,/ IMO and A, Their presence
results from our use of the close-coupling approximation
to truncate the (in principle infinite) sums in the expan-
sions (11), (13), and (15). Together with the maximum
value ry,, of the projectile coordinate r, — the value at

which the FN T-matrix elements FNT[‘IO (R) are extract-

ed from the matrix of radial scattering functions that
solve Egs. (12)—these four limits constitute the “conver-
gence parameters” of the present calculations. Their
determination is the subject of Sec. III.

III. METHODOLOGICAL MINUTIAE

A. The N, target

The static and exchange terms and the BTAD polar-
ization potential are all based on a near-Hartree-Fock
(HF) representation of the occupied molecular orbitals of
the X 12; (ground) electronic state of N,. To represent
this state, we used a basis of contracted nucleus-centered
Cartesian Gaussmn functions that was determined by
Morrison and Hay?? in their study of the R dependence
of the polarizability of N,. This basis, which describes
the unpolarized neutral target, is a (9s5p1d /5s3p1d)
contraction of a (9s5p) nitrogen basis*® with an addition-
al 3d function to facilitate bond formation.*!

In calculating the BTAD potential, we must augment
this basis to make it sufficiently flexible that it can
represent distortions of the target charge density by the
(fixed) scattering electron. To this end, we added to this
neutral basis uncontracted, s, p, and d functions,?? result-
ing in a (6s4p2d) basis. For an internuclear separation
R =2.068a,, this basis yields a ground-state HF ener-
gy*? of —108.9746E,. By contrast, the (essentially ex-
act) partial-wave HF electronic energy for this internu-
clear separation is** —108.9928E,.

The unpolarized ground-state HF electronic wave
function [from the (6s5p2d) basis] is used to calculate

the static potential®® ¥, in Eq. (13). In the limit 7, — oo,
the Legendre projections of this potential define the per-
manent multipole moments of the molecule as

i R)= 22t L 7 Valre; )P (c0s6, sind, d6,
CA(R)
r—>oo_ 2rl+l . am

e

For our (augmented) neutral X IE+ basis, the first three
moments for R =2.068a, are***

c,(R)=—0.91ea} ,
c4y(R)=—T.4leaf , (18)
c¢(R)=—20.68ea§ .

These values were extracted from the Legendre projec-
tions in (17) at r,=10.0ay, by which point each projec-
tion v§(r,;R) had settled down to its limiting multipole
form [to the precision shown in Eqs. (18)]. For compar-
ison, the experimental value, as determined from mea-
surements of induced birefringence, of the average of
thlS moment over the ground vibrational state of N,
is*47 ¢y = (1.04£0.07)ea .

Slmllarly, we can extract the (fixed-R) polarizabilities
of the target from the asymptotic limit of the first two
Legendre projections of the BTAD polarization potential
[see Eq. (7)]. For R =2.068a, we obtain from these pro-
jections at r, =25a, the values

CalR)=11.42a% ,

(19)
a(R)=3.37a} .

The static spherical polarizability was measured by
Newell and Baird*® and by Orcutt and Cole® to be
ap=(11.74410.004)ad at room temperature (i.e., aver-
aged over the ground electronic state). Bridge and Buck-
ingham*7%0 measured the relative polarizability anisotro-
py @,/ at 633 nm; this ratio is likely to be the same at
zero frequency, implying that a,=(3.08:0.002)a3.

B. Three polarization potentials

At various stages of the present investigation of ¢-N,
scattering we used three polarization potentials.
Foremost among these is the BTAD potential, which, as
described in Sec. I A, is free of adjustable parameters
and allows for nonadiabatic effects via the nonpenetrat-
ing approximation of Eq. (9). We also calculated select-
ed cross sections using the correlation-polarization (CP)
potential of O’Connell and Lane,’* which Padial and
Norcross have also applied to this system,'® and the phe-
nomenological potential (7), using values of the power
and cutoff parameters from an earlier study by Morrison
and Collins.?® Here we shall briefly describe salient com-
putational features of these potentials.
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1. The BTAD potential and its two-term approximation

In our initial verifications of our computer programs,
we considered a purely adiabatic e-N, potential V-i‘}gl) S0
as to allow comparison at the level of the potential with
prior results.?>?3 We calculated this potential variation-
ally (see Sec. II A) without invoking the nonpenetrating
approximation. In spite of differences in the basis sets
used in these three studies, the polarization potentials
agree well. For example, for the elsctron fixed at
x,=2.0ay, Morrison and Hay?? report a polarization po-
tential of —0.094E,, Eades et al.2® report —0.095E;,
and the present calculations produce —0.104E,,; for
z,=2.0a,, these values are —0.494E;,, —0.473E;, and
—0.490E,,, respectively. The parallel and perpendicular
polarizabilities, as extracted from the large-r, values of
the potential, show comparable agreemer:t.

Another point about the present realization of the
BTAD potential requires comment. We represent this
potential by a fwo-term Legendre expansion—i.e., we re-
tain only the A=0 and A=2 coefficients of the polariza-
tions potential in the expansion (13) of the direct poten-
tial. (Of course, far more than two ternis in the expan-
sion of the static potential must be retained.) The accu-
racy of this approximation is discussed by Morrison and
Hay,22 who show that for a purely adiabatic potential,
under certain circumstances, higher-order contributions
to Vo may be important.

To check the two-term approximation for the BTAD
potential, we performed self-consistent-ficld calculations
(using the POLYATOM molecular structure package) of
the full polarization potential Vg;liAD(re,Qe;R) at several
radial positions », for five projectile angles: 6,=0 (on
the z axis), 18.36°, 42.14°, 66.06°, and 90.0° (on the x
axis). These self-consistent-field (SCF) values were than
compared to their two-term approximates,
VB (rg; R)+ 05 (re; R) Pylcos, ).

For all values of 7, sampled, we found the two-term
approximation to the BTAD potential to be accurate to
better than 19%. Interestingly, this level of agreement is
not obtained for a purely adiabatic potential. For exam-
ple, at 7, =1.5a,, the two-term and SCF adiabatic poten-
tials disagree by 3% at all angles; nearer to the target,
the errors introduced by the two-term approximation for
the adiabatic potential are quite large, while those for
the BTAD potential remain small. Thus, the (approxi-
mate) inclusion of nonadiabatic effects in the BTAD po-
tential mitigates the error noted by Morrison and Hay??
due to the two-term approximation.
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2. The correlation-polarization potential

The CP potential is determined by “hooking” a short-
range model correlation potential to the asymptotic form
of the polarization potential, Eq. (7). The correlation
potential, which is a parameter-free model based on the
application of the local density approximation to the
free-electron-gas model of the target, can easily be calcu-
lated from the undistorted probability density of the tar-
get molecule.

In a variety of applications in the rigid-rotator approx-
imation!>'® the CP potential has yielded cross sections
that agree remarkably well with experimental data
(where such comparison are possible). A recent study of
this model potential for vibrational excitation of H,,

" however, raised questions about its accuracy for this

scattering process.”!

In any case, the present study affords an opportunity
to compare the CP and BTAD models in the carefully
controlled context of scattering calculations based on
identical occupied orbitals, using identical numerical
procedures and computer programs, and in which identi-
cal, stringent convergence criteria could be (and were)
imposed. )

As in our realization of the BTAD potential, only the
A=0 and 2 Legendre projections in the single-center ex-
pansion of the CP potential are retained. Examination
of the analytic form for this potential {see Eq. (9} of Ref.
15] shows that these projections are fully described by
four R-dependent parameters: the radius r*(R) at which
each component of the (short-range) correlation poten-
tial crosses (and hence is joined to) the asymptotic polar-
ization term —a;(R)/2r2, and the value of v T of the A
projection of the CP potential at this radius.

We calculated the CP potential using (in the correla-
tion part) the ground-state N, basis described in Sec.
IITIA. The resulting parameters are compared to those
of Padial and Norcross'>>? in Table I.

3. The semiempirical heuristic polarization potential

Finally, we performed a few scattering calculations us-
ing a phenomenological polarization potential (7). In a
prior study of e-N, scattering, Morrison and Collins®®
used such a form together with a near-Hartree-Fock
static potential, which they calculated from the ground-
state electronic function of Cade ef @l.,* and a tuned
free-electron-gas model exchange potential. Although
their cross sections agreed rather well with existing ex-

TABLE I. Parameters of the correlation-polarization potential for N, (see Ref. 52).

rp? r2 —vS§P(rOR) —v5P(rZR)
(units of ag) (units of ao) (units of Ej) (units of Ej)
Present® 3.625 3.825 0.03307 0.007 87
Padial and Norcross® (Ref. 15} 3.5 34 A 0.0379 0.011

*Based on Eq. (9) of Ref. 15.
’Based on Eq, (6) of Ref. 15,
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perimental data, the validity of their phenomenological
polarization potential was hard to assess because a mod-
el exchange potential was also used in this study—which
feature made it impossible to determine the extent to
which inaccuracies in one model potential might be com-
pensating for weaknesses in the other.

In order to shed some light on this matter and on the
validity of these widely used heuristic forms, we carried
out new scattering calculations with this potential using
the parameters determined by Morrison and Collins.?
That is, rather than retune the cutoff function (8), we
simply adopted their values of p =6 for the power pa-
rameter and r,=2.34la, for the cutoff radius. The
latter value was chosen to position the ZHg shape reso-
nance in their model-exchange cross section at the ex-
perimentally determined energy>> of 2.39 eV.

C. Parameters of the scattering calculations

We converged the scattering quantities (cross sections
and eigenphase sums) reported in Sec. IV to 1% at ener-
gies up to 1.0 Ry in the six “lowest” electron-molecule
(BF-FN) symmetries: 2., Z,, IL,, II,, A;, and A,.
Differential cross sections, which are more sensitive,
were converged separately to this accuracy. To ensure
convergence, the following four quantities must be deter-
mined.

I max, the maximum order partial wave (spherical har-
monic, with z as the quantization axis) included in the
expansion (11} of the BF-FN scattering function.

132+, the maximum order partial wave included in the
expansion of the scattering function in the exchange
term in the coupled equations (12).

IMO the maximum order partial wave included in the
expansion (15) of the occupied (bound) molecular orbit-
als in the exchange kernel (16).

Fmax, the radius at which the BF-FN scattering matrix
is extracted from the solution matrix.
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The last of these parameters calls for further com-
ment. We used the linear algebraic method per se only
for r, «6.0ay; outside a sphere of this radius, the in-
teraction potential reduces to a smoothly dying asymp-
totic form [see Egs. (7) and (17)], and it is (far) more
efficient to call upon a standard propagative scheme to
get 10 Fpa. To this end, we use the R-matrix propaga-
tor method as implemented by Light and Walker.’* We
can check that our maximum radius is large enough to
accommodate all significant distortion of the scattering
function by the simple expedient of integrating the cou-
pled equations still farther. As exemplified by the data
at E,=0.1 Ry in Table II, integrating these equations
for the 2,, Z,, I, II,, A;, and A, symmetries to
r=100a, confirms that r,,, =85.0a, is sufficient to con-
verge our cross sections to the desired accuracy. Similar
tests at (body) scattering energies of 0.5 and 1.0 Ry es-
tablished that this maximum radius is appropriate to the
entire energy range considered in this work.

In the region where the linear algebraic method is
used, we exploited one of its most useful features: the
ability to use different (radial) quadrature meshes for
different channels.”® This feature enabled us to optimize
time and accuracy. After extensive convergence studies
in which we varied the number of points in various
channel ranges, we determined our final (Gauss-
Legendre) quadrature mesh. It consists of 50 points for
the first six channels in the X, II, and A symmetries: 10
points from 0.0 to 0.7, 24 points from 0.7 to 1.5, 10
points from 1.5 to 2.5, and 6 points from 2.5 to 6.0. For
the remaining channels, we use 6 points from 0.0 to 0.7,
14 points from 0.7 to 1.5, and 6 points from 1.5 to 6.0.

We now turn to the various quantities that control the
upper limits on expansions in the formalism in Sec. II B.
In order to determine the number of continuum partial
waves one must include in the coupled scattering equa-
tions, we began with the number of channels in the
direct and exchange terms equal; i.e., with [, =I% ..

TABLE II. Convergence studies for e -N; scattering in the static-exchange approximation (see Sec.
IVB): Z, eigenphase sums and partial cross sections at £, =0.01 Ry. The convergence parameters
are described in Sec. II B. For each test, only those convergence parameters that are changed are list-
ed on all three lines; in each case, the bold-faced value of each parameter is the one used in the calcu-

lations that produced the results of Sec. IV.

T'max 8(Z;)

lmBX Ifx]x(ax lxgc 0"( zx )
22 10 6 50.0 2.4004 55.4152
85.0 2.4002 55.4122

100.0 2.4002 55.4116

22 4 4 85.0 2.8917 73.4865
10 2.8933 72.5980

16 2.8932 72.6000

22 4 16 85.0 - 2.8932 72.5000
‘ 12 2.9007 68.3050

16 2.9008 68.2377

14 14 4 85.0 2.3541 61.2069
. 22 2 2.3752 58.5773
28 28 2.3794 58.6032




Subsequently, we could reduce the number of continuum
partial waves included in the exchange term, resulting in
a considerable savings of computer time with no atten-
dant loss of accuracy. Examples of the convergence
properties of the eigenphase sums and rartial cross sec-
tions in the (particularly sensitive) 2, symmetry at
E,=0.01 Ry are shown in Table II. Note that these
studies were performed in the static-exchange approxima-
tion (see Sec. IV B) to facilitate comparison of our results
to those of other investigators. We pe:formed similar
convergence tests at the additional test energies 0.5 and
1.0 Ry, which span the energy range considered in this
study.

Especial care is required in treating the molecular or-
bital expansion in the exchange kernel—for in a calcula-
tion in which exchange effects are treat::d exactly, each
additional such term results in a large increase in com-
puter time. As Table II illustrates, we could obtain the
desired 1% accuracy by including 10 terms in this ex-
pansion, a limit we checked via scattering calculations
including 16 such terms at the aforementioned test ener-
gies. For energies near 1.0 Ry and in symmetries other
than Z,, one can use one or two fewer terms in this ex-
pansion with no loss of accuracy.

IV. RESULTS AND INTERPRETATION

A. Polarization potentials

Consistent with the two-term approximation discussed
in Sec. IIIB 1, we calculated the A=0 and 2 Legendre
projections of the purely adiabatic and tlie BTAD polar-
ization potentials from their SCF values Vp,(r,,6.;R)
[see, for example, Eq. (3) for the adiabatic potential], po-
sitioning the projectile on the BF z axis (8, =0) and on
the x axis (6, =w/2):

V2N r; R)=1[2V o1 (re, T/ 2;R)+ Vi (re,0;R)] ,  (20a)

V27 R)=2[Voot(Fe, T/2;R) — Vo (r,,0;R)] . (20b)

In Figs. 1, these projections are graphe: together with
those of the CP potential of Sec. IIIB2 and of the PO
potentials of Onda and Temkin!® and of Weatherford
et al*® ‘

Several points of interest are apparent in these figures.
First, in the near-target region, the BTAD and CP po-
tentials are noticeably weaker than the purely adiabatic
form. This weakening of polarization potentials at small
¥, is a manifestation of higher-order nonadiabatic terms,
which these two models approximate; this effect has
been studied in depth for the e -He system.*®

Second, the PO potentials differ from the others dis-
cussed in this section in one important respect: They are
repulsive along the x axis for small #.. This feature
causes the spherical projection of the PC potential to be
positive for 7, < 0.5ag, unlike the BTAD or CP (or pure-
ly adiabatic) potentials. We also note that the A=2 pro-
jection of the PO potential of Onda and Temkin!® is con-
siderably stronger for » <1.5a, than any of the other
potentials considered here, including the purely adiabat-
ic form—a result that is somewhat surprising, since
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FIG. 1. (a) Spherical (A=0) and (b) nonspherical (A=2)
projections of e-N, polarization potentials at R =2.068a,.
The BTAD (solid curve) and CP (long-dash curve) potentials
are described in Sec. II as is the purely adiabatic potential
(short-dash curve). Also shown are the polarized orbital poten-
tial of Onda and Temkin (Ref. 10) (solid curve with stars) and
the cutoff form of this potential used by Weatherford et al.
(Ref. 30) (solid curve with squares).

Onda and Temkin implemented the same nonpenetrating
approximation in their PO calculations as we did in gen-
erating our BTAD model. In any case, the cutoff func-
tion [Eq. (8) with p =2] used by Weatherford et al.*®
ameliorates this difference, bringing both projections of
the PO potential into closer agreement with the other
two nonadiabatic models. :

The A=0 and 2 components of our BTAD potential
are tabulated in Table III; sufficient points are given in
this table so that, if desired, both projections can be ac-
curately interpolated (via, say, a cubic-spline interpola-
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tor) onto the integration mesh of a future scattering cal-
culation. For greater ease of implementation, we have
also fitted this potential to a convenient analytic form

—(rg trg¥

1—e
(arl+br,+c2)

pBTAD(p -R)=—D -(21a)

Note that none of the constants in this form —including
the constant ro—was determined by recourse to experi-
mental data; instead, all were obtained from the fit to the
numerical potential in Table III. The values of these
constants are

a=0.97, b=—1.66, ¢=2.83
D =47, rq=1.35, f=2.62, 0<r,<6.0a,
For A=0{a =0.98, b =0, ¢=0.95 (21b)
D =517, ry=1.35 f=2.62,

6.0<r, <25.0ay ,

a=1.6, b=0.16,

¢c=1.9
D =4.75, ro=1.59, f=4.7, 0<r,<8.0ay
For A=2{a=1.0, b=0, ¢=0 21¢)
D=1.68, rg=1.59, f=4.7,

8.0<r, <25.0a, .

TABLE III. Legendre projections of the BTAD polarization
potential at R =2.068a, for A=0 and A=2 [see Egs. (20)].
The values of the projections are given in atomic units (har-
trees). A fit to these data appears in Egs. (21). (Note:
1.0[ —04]=1.0x10"%)

r. {units of ag) UETAD(r,;R) ugTAD(re;R)

0.10 —0.5732[—06] —0.4317[—06]
0.20 —0.3405[—04] —0.2621[—04]
0.50 —0.4958[—02] —0.4059[—02]
0.75 —0.2386[—01] —0.1847[—01]
0.90 —0.3454[—01] —0.2312[—01]
1.00 —0.3831[—01] —0.2290[—01]
1.15 —0.4372[—01] —0.2796[—01]
1.25 —0.4739[—01] —0.3308[—01]
1.50 © —0.5711[—01] —0.4357[—01]
2.00 —0.6130[—01] —0.4162[—01]
2.50 —0.4593[—01] ~0.2336[—01]
3.00 —0.3199]—01] —0.1194[—01]
4.00 —0.1677[—01] —0.4705[—02]
5.00 —0.8499[—02] —0.2414[—02]
6.00 —0.4341{—02] —0.1272[—02]
7.00 —0.2373[—02] - —0.7011[—03]
8.00 —0.1395[—02] —0.4127[—03]
9.00 —0.8715[—03] —0.2579[— 03]
10.00 —0.5717[—03] —0.1692[— 03]
15.00 —0.1129[—03] —0.3339[—04]
20.00 —0.3572[—04] —0.1057[—04]
25.00 __—0.1462[-04]  —04308[—05]
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B. Scattering in the static-exchange approximation

Although physically unrealistic, the static-exchange
(SE) approximation—in which one neglects polarization
and correlation effects—is important to theorists, for it
is the foundation on which they erect investigations
(such as the present one) of polarization.** A founda-
tion of accurate SE calculations is particularly important
for comparisons of scattering quantities based on
different treatments of polarization; unless the static and
exchange interactions are unerringly included, such com-
parisons are of dubious significance. This explains the
extensive attention theorists have paid over the years to
e -N, scattering in this approximation.’’ —%

We have calculated BF-FN eigenphase sums and cross
sections in the SE approximation in the X, II, and A
e-N, symmetries at five selected energies—first, to
check our linear algebraic code, and second, to compare
our treatment of SE effects with those adopted in prlor
research on this system. In these calculations, we in-
.cluded the direct nonlocal exchange kernel (16), rather
than apply the widely used separable representation of
this kernel.® As a cross check, we calculated scattering
quantities using a wholly different computer program
based on the iterative static-exchange method of Collins
et al.;’® the two codes gave results identical to within
the convergence criterion (1%) imposed on both calcula-
tions.

The scattering quantity that at low, nonresonant ener-
gies is most sensitive to exchange is the eigenphase sum
in the 2, symmetry. In Table IV we compare our values
for this quantity at three energies with those of other SE
studies. The results in this table are split into two
classes, depending on whether exchange was treated
directly or via a separable representation on a finite
basis. Included in this table are the present exact-
exchange, linear-algebraic calculatlons and those of Col-
hns which were based on the X Eg N, wave function
of Cade et al® To suggest the accuracy of the separ-
-able approximation, we also show separable-exchange,
linear-algebraic eigenphase sums calculated by Collins.®

TABLE 1V. Electron-N, eigenphase sums in the ¥, symme-
try at R =2.0684q, in the static-exchange approximation.

Energy (Ry) ~ 0.10 050 1.00
Exact exchange
Present . 2.4067 1.7386 1.3135
Linear algebraic? 2.4096 1.7398 1.3107
R matrix® 2.433 1.771 1.229
PDE method® 2417 1.747 1.350
Separable exchange
Linear algebraic* 2.423 1.730 1.342
T matrix® 2425 1.726 1.295

2Collins, Ref. 60.

*Burke ez al., Ref. 6.
‘Weatherford et al., Ref. 30.
YMeyer, Ref. 58.
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TABLE V. Electron-N, static-exchange eigenphase sums and partial cross sections in all =, IT, and
A symmetries at R =2.068a,. For each energy, the top line gives the eigenphase sum (in radians) and
the lower line gives the corresp-onding cross section (in square bohr) in parentheses.

E Ry) =, =, o, ., A, A,
0.10 2.4067 2.9711 3.0698 0.0141 0.0137 3.1390
(54.624) (3.230) (1.046) (0.104) (0.076) (0.0016)
0.25 2.0542 27437 29169 0.8170 0.0440 3.1394
~ (39.000) " (7.065) (4.546) (54.330) (0.245) (0.0021)

0.50 . 17386 2.4454 27131 2.5279 0.1368 0.0069
(24.423) (10.249) (8.604) (16.126) (1.023) (0.0105)

0.75 1.5137 2.2379 2.5744 2.5281 0.2554 0.0281
(16.755) (10.966) (10.515) (10.751) (2.218) (0.0440)

1.00 1.3135 2.1131 2.4872 2.4908 0.3713 0.0601
(12.347) (10.641) (11.301) (9.051) (33149 (0.1174)

TABLE VI. Electron-N, stztic-exchange-polarization eigenphase sums and partial cross sections in
= and II symmetries at R =2.068a,. For each energy, the top line gives the eigenphase sum (in radi-
ans) and the lower line gives the corresponding cross sections (in square bohr) in parentheses. Also
shown on the second line for vach energy are the total integrated and momentum transfer cross sec-
tions (in square angstroms); thuse results include contributions from A symmetries. (Only selected en-
ergies are shown; a complete table is available on request from the authors.)

E (Ry) 2 2y 1, . H, l  Ttot . Omom
0.0007 3.1226 3.1396 3.1446 0.000
(6.145) (0.070) (0.323) (0.000) 1.832 2.110
0.0015 3.1106 3.1383 3.1475 0.000
(8.029) (0.093) (0.633) (0.001) 2.459 2.920

0.0029 3.0906 3.1378 3.1514 0.000

(10.669) (0.065) (0.906) (0.005) 3.281 3.945
0.0051 " 3.0657 3.1378 3.1562 0.000 ‘

(13.578) (0.035) (1.149) (0.01) 4.165 5.063
0.0100 3.0203 3.1384 3.1646 0.0007

(18.036) (0.016) (1.462) (0.014) 5.508 6.730
0.0500 2.7927 3.1280 3.1929 0.0223 ‘

(31.101) (0.065) (1.207) (0.252) 9.238 10.358
0.1000 2.6219 3.0831 3.1824 0.1103

(34.3878) (0.5428) (0.287) (2.908) 10.856 10.888
0.1500 2.5011 3.0261 3.1541 0.6659

(34.282) (1.385) (0.036) (63.087) 27.929 27.702
0.2000 2.4086 2.9660 3.1193 2:4897

(33.036) (2.381) (0.296) (47.263) 23.600 . 20.780
0.2500 2.3333 2.9067 3.0828 2.7322

(31.368) (3.399) (0.851) (16.784) 15.148 12.200
0.3500 2.2134 2.7952 3.0120 2.8023 )

(27.770) (5.257) (2.314) (8.795) 13.077 9.915
0.5000 2.0662 . 2.6519 ©2.9200 2.7943

(22.888). (7.354) (4.530) (6.790) 12.749 9.558
0.7500 1.8495 2.4803 2.8098 2.7512

(16.698) (9.248) (7.356) (6.067) 12.709 9.581
1.0000 1.6447 2.3966 2.7466 27118

(12.609) (10.037) (9.132) (5.810) 12.564 9.409

3691



3692

The separable approximation was used in the T-matrix
calculations of Meyer®® but in none of the other studies
quoted. Thus, Noble et al.’” implemented the R-matrix
method using a representation of the exchange kernel on
a basis of Slater-type orbitals. The results from Weath-
erford et al.’® were obtained using the aforementioned
PDE method.

This table illustrates the degree of unanimity that has
been achieved thus far in studies based on widely
disparate numerical methods for solving the e-N,
scattering problem at the SE level. Our exact-exchange
linear-algebraic eigenphase sums and partial cross sec-
tions for the = and II symmetries are given in Table V.,

C. Diverse cross sections

Including polarization effects (by whatever means)
wreaks considerable changes on the FN eigenphase sums
and cross sections—as a comparison of Table V, which
contains our SE results, and Table VI, which contains
our static-exchange-polarization BTAD results, will at-
test. The sensitivity of these scattering quantities to how
one includes polarization is illustrated by the 2, partial
cross sections in Fig. 2. In addition to the present
BTAD and CP results, this rather busy figure contains
cross sections from the linear algebraic calculations of
Schneider and Collins® and the R-matrix calculations of
Burke ez al.,® both of which treat polarization via an op-
tical potential, from the Schwinger multichannel calcula-
tions by Huo et al.,” which is a pseudostate technique,
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FIG. 2. Partial e-N, cross sections in the X, symmetry.
The BTAD (solid curve), CP (long-dash curve), and cutoff phe-
nomenological (short-dash curve) results are from the present
work. [The latter potential is based on Eq. (8) with parameters
chosen from Ref. 26]. Also shown are results from model-

exchange (with phenomenological polarization) calculations of

Morrison and Collins (Ref. 26) (diamonds), the optical poten-
tial study of Schneider and Collins (Ref. 69) (pluses), the R-
matrix study of Burke et al. (Ref. 6) (stars), and the Schwinger
multichannel results of Huo et al. (Ref. 7) (triangles).
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and from the close-coupling calculations of Morrison
and Collins.?® ‘

In the latter calculation, polarization effects were ap-
proximated by the phenomenological model (7), using
p=6 and r,=2.34la, in the cutoff function, and ex-
change effects by a Hara free-electron-gas model ex-
change potential.®®> To explore the extent to which these
two model potentials interacted in this earlier study, we
calculated =, cross sections using this polarization po-
tential and parameters but treating exchange exactly.
The results, shown by the dotted curve in Fig. 2, show
that, as often happens when more than one model poten-
tial is used in a scattering calculation, the phenomeno-

" logical polarization potential used by Morrison and Col-

lins compensated for weaknesses in their model exchange
potential. In fact, the shape resonance in the total in-
tegrated cross section, which Morrison and Collins posi-
tioned at 2.39 eV in the model-exchange calculation by
tuning their polarization potential, occurs in the present
exact-exchange calculation at 1.547 eV; the difference
between these resonance energies is entirely attributable
to the different treatment of exchange in the two studies.

1. Total and momentum transfer cross sections

The 3, cross sections in Fig. 2 are but one contributor
to the total cross section, the sum of elastic and rotation-
al excitation contributions. Our BTAD total cross
sections—as calculated from FN scattering matrices in
the Z, I, and A symmetries, augmented by contributions
from higher symmetries in the first Born
approximation—are compared to recent experimental
data over the entire energy range considered in this
study in Fig. 3(a). (An exhaustive survey of other mea-
surements of e-N, cross sections appears in the review
by Trajmar et al.’!)

Two experimental cross sections are featured in this
figure. The absolute cross sections of Kennerly,’> ob-
tained with a transmission time-of-flight apparatus, en-
compass the full range of energies in the present theoret-
ical study. Kennerly estimates his results to be accurate
to £3%; below the resonance, these error bounds em-
brace our BTAD (and CP) results. The most recent
measurement of total cross sections, by Suoeka and
Mori,*? is based on a retarding potential time-of-flight
technique and produced cross sections at and above 1.2
eV. Poor resolution of the average energy perpendicular
to the flight path of the electron caused the shape reso-
nance peak obtained by Suoeka and Mori to lie below
the generally accepted energy,”*>* 2.4 eV.

Various theoretical cross sections, from this and other
studies, at nonresonant energies are compared in Fig.
3(b). Like the theoretical studies that generated the Z;
cross sections in Fig. 2, those in Fig. 3 include polariza-
tion via several different strategies. Particularly
noteworthy in the latter figure is the close agreement of
the BTAD and CP total cross sections.®

The most obvious difference between the theoretical
total cross sections and the experimental results of
Kennerly®® is the lack in the former of oscillatory struc-
ture near the resonance. The use of the FN approxima-
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FIG. 3. Total integrated e-N, cross sections calculated with
the BTAD potential (solid curve) compared to (a) experimental
data of Kennerly (Ref. 53) (crosses) and of Suoeka and Mori
(Ref. 62) (squares). (b) Theoretical total cross sections for the
BTAD potential (solid curve}), our CP potential (long-dash

curve), and with the CP potential of Padial and Norcross (Ref.

15) (circles with dots). Also shown are the potarized orbital re-
sults of Weatherford et al. (Ref. 30) (circles with pluses), the
Schwinger multichannel results of Huo et al. (Ref. 7) (dia-
monds), and the model-exchange (with phenomenological po-
larization) cross sections of Morrison and Collins (Ref. 26)
(short-dash curve). Finally, we include the 3, integrated cross
sections calculated using optical . potential formulations by
Burke et al. (Ref. 6) (stars) and by Schneider and Collins (Ref.
69) (pluses).
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tion in our calculations precludes this structure—which
does, however, appear if the dynamical interaction of the
motions of the projectile and the nuclei are somehow
taken into account, as in the work by Chandra and Tem-
kin® using the hybrid theory; by Morgan® and by
Schneider et al.5 using the R-matrix method; by Dubé
and Herzenberg®” and by Hazi et al.® using the
boomerang model; and by Berman and Domcke®! using
many-body optical-potential theory.

Nevertheless, our FN eigenphase sums in the 2Hg
symmetry clearly exhibit a shape resonance (Table VI),
and these data can be fitted to a Breit-Wigner form
(modified to allow for background scattering) to yield the
resonance energy E, and width T" for R =2.068q,.
These data are given in Table VII, where they are com-
pared to results from several recent (parameter-free)
studies. For comparison we use the experimental “refer-
ence values” determined by Berman et al.,’° E,=2.32
eV and I'=0.41 eV. In all studies quoted in Table VII,
the shape resonance appears at the indicated energy
without adjustment or tuning in the calculation.

Direct measurement techniques yielded the total cross
sections in Fig. 3(a); by contrast, indirect techniques—
the numerical solution of the Boltzmann equation to an-
alyze measured transport data—can be used to deter-
mine very-low-energy momentum transfer cross sections
to high accuracy. In Fig. 4, our BTAD (total) momen-
tum transfer cross sections are compared to the effective
cross sections derived by Englehardt et al.”' [Recently,
Phelps and Pitchford’? analyzed the validity of assump-
tions underlying these (and other) swarm-derived cross
sections.]

2. Elastic differential (and integrated) cross sections

The most severe test of a theoretical calculation is to
compare its differential cross sections to experiment.

TABLE VIL. Energy and width of the *II; e-N, shape reso-
nance as calculated using various methods of including polar-
ization effects. [The eigenphase sums for the cutoff phenome-
nological potential (7) were calculated using the parameters p
and r, given in Morrison and Collins (Ref. 26); see Sec. IV C.]

Method E, V) I (V)
Present (BTAD) 2.253 0472
Present (CP) 2,181 0.458
Present (phenomenological) 1.547 0.221
Integral equations® (CP) 2.17 0.47
Optical potential® 2.07 0.301
Stieltjes imaging® ) 2.23 0.40
Many-body optical potentiald 2.24 0.34
Schwinger multichannel® 2.257 0.387
Experimental’ 2.32 0.41

*Padial and Norcross, Ref. 15.

*Schneider and Collins, Ref. 69.

°Hazi et al., Ref. 68.

9Berman and Domcke, Ref. 31.

°Fit to eigenphase sums from Huo et al., Ref. 7.

'See Morgan, Ref. 65.
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FIG. 4. Total momentum transfer cross sections calculated
with the BTAD potential (solid curve) and the effective,
swarm-derived experimental data of Engelhardt er al. (Ref. 71)
(crosses).

The most recent determination of these cross sections is
that of Sohn et al.”® (see also Ref. 74). These authors
measured absolute elastic differential cross sections from
energies from 0.1 to 1.5 eV, using a crossed-beam elec-
tron spectrometer.” In Figs. 5, we compare theoretical
and experimental elastic differential cross sections at
three energies: 0.1, 0.55, and 1.5 eV. The theoretical
cross sections reproduce the prominent backward
scattering at the lowest energy [Fig. 5(a)]. They also ex-
hibit the characteristic shape of the (d-wave dominated)
near-resonance cross section at 1.5 eV [Fig. 5(c)]. Ex-
cept at this energy, where the lack of vibrational effects
in the theoretical calculation prohibits quantitative
agreement, our cross sections lie only slightly outside the
experimental error bars of roughly *+ 15%.7

To effect a further comparison with the recent mea-
surements of Sohn et al.,”* we compare in Table VIII in-
tegrated elastic cross sections from our calculations and
their experiment. Sohn et al. determined the latter by
extrapolating their differential cross sections—whose
measured angular range extends from 15° to 135°—to 0°
and 180° and numerically integrating the result. The
elastic cross section is the dominant contributor to the
total gross section, so to put this comparison into per-
spective, we have included in Table VIII our total in-
tegrated cross sections at these energies as well as the
measured values of Kennerly>® and of Baldwin.”’

3. Rotational excitation cross sections

Rotational excitation of nitrogen is an important
energy-loss mechanism in molecular gases, and thus
cross sections for this process play a significant role in
the modeling of electron velocity distributions in gaseous
discharges. Unlike their vibrational excitation counter-
parts, which for some molecules exhibit strange spikes
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FIG. 5. Elastic e-N; differential cross sections at (a) 0.1 eV,
(b) 0.55 eV, and (c) 1.5 eV. The solid curves are results of the
present BTAD calculations. The stars are experimental data of
Sohn et al. (Ref. 73). In (c), the squares are experimental data
of Shyn and Carnignan (Ref. 74).
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)

TABLE VIII. Integrated elastic and total e-N, cross sections: theoretical and experimental results.
The theoretical cross sections were calculated with the BTAD potential and exact exchange at
R =2.068a, (including Z, I, and A symmetries). The experimental elastic cross sections were deter-
mined by Sohn e al. (Ref. 73) by extrapolating and numerically integrating measured absolute
differential cross sections.
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° 2 " e 2
ga (A7) . Ot (A7)
Expt. (Ref. 73) BTAD BTAD Expt. (Ref. 77) Expt. (Ref. 53)

010 4.44 4.63 4.85
0.35 6.15 : 7.53 7.78 6.73
0.55 6.81 . 8.52 ~ 8.81 9.01 8.896
1.00 7.30 9.56 9.97 9.95 9.93
1.50 7.43 10.58 1150 1141 11,17

near threshold,* rotational excitation cross sections are
usually thought to rise smoothly from threshold. A
striking exception to this general precept is the e-N, ro-
tational excitation cross section recently pubhshed by
Onda;”® these results show a phenomenon unique in
cross sections for this process: a sharp peak at an ener-
gy near 0.08 eV.

Onda’s calculations were based on the PO polarization
potential of Onda and Temkin,'® which was discussed in
Sec. IT A, where we noted similarities anc differences be-
tween this PO potential and our BTAD j:otential. As is
evident in Fig. 6(a), the BTAD rotational excitation
cross sections exhibit the resonance peak, albeit without
vibrational substructure, and o; jo—j fOr jo=0—j=4
exceeds that for j,=0—j =2 by almost a factor of 3, in
confirmity with earlier findings of Burke and Chandra,”
while cross sections for higher values of j are smaller by
several orders of magnitude.®’ This behavior is similar
to that seen in Onda’s PO cross sections. The BTAD
and PO results differ conspicuously, however, near
threshold. As can be seen for jo=0—j ==2 in Fig. 6(b),
the former show no trace of the peak prusent in Onda’s
results. Similarly, the CP potential produces smoothly
varying cross sections that, in fact, look quite hke the
BTAD results.

Onda’s study differs from the present work in its treat-
ment both of polarization and of exchange. Onda’s cal-
culations are based on the free-electron-gas model ex-
change potential introduced by Onda and Temkin'® (see
Sec. IL A). This potential is scaled by an overall, multi-
plicative parameter € that assumes two values. For the

resonant (II;) symmetry, this parameter is given the

value €=0. 482, which positions the first resonance peak
in the (oscillatory) total cross section at thie experimental
position measured by Kennerly.>®> In nonresonant sym-
metries, however, this parameter is given the value
€=0.73, which makes the theoretical total cross section
agree with Kennerly’s measured result at 0.05 eV. Un-
fortunately, it is impossible to tell whether the disparity
evident in Fig. 6(b) derives from differencss in the polar-
ization potentials used or in the treatments of exchange.

. Furthermore, direct experimental resclution of. this
discrepancy—in, say, a crossed-beam experiment—is
unlikely, considering the extremely low threshold for ro-
tational excitation of N,. For this molecule the rotation-

al constant is 2.477X 10~* eV, so the energy spacing be-
tween the j =0 and levels is 0.001 486 V.

This discrepancy may, however, be resolved by appeal
to indirect techniques. Energy loss from a swarm of
low-energy electrons drifting and diffusing through a gas
of N, molecules under the influence of an applied elec-
tric field is extremely sensitive to rotational excitation
cross sections. So we suggest that by feeding our rota-
tional excitation cross sections (Table IX) and those of
Onda’s separately into programs that solve the
Boltzmann equation to calculate transport properties
such as drift velocities and diffusion coefficients and
comparing those properties to measured data, one might
be able to shed light on this discrepancy.®!

A peculiarity of rotational excitation in electron
swarms in N, is related to the two approximations to the
Jo=0—j =2 cross sections shown in this figure. The
“quadrupole Born” cross section, calculated using the
formulas of Gerjuoy and Stein,®? are based on the first
Born approximation but neglect the long-range induced
polarization interaction. This interaction is included in
the “polarized Born” cross section, which is based on
the first Born formulas of Dalgarno and Moffett,?> where
it produces a smaller cross section than the quadrupole
Born result. Interestingly, it is the quadrupole Born
cross section—not the (presumably more accurate) po-
larized Born curve—that, when inserted into the mul-
titerm solution of the Boltzmann equation, produces
transport coefficients in agreement with experiment.®*
Figure 6(b) provides some insight into this observation:
the BTAD and CP curves are increased over the polar-
ized Born cross sections due to their more accurate in-
clusion of static, exchange, and intermediate- and short-
range polarization and correlation effects. Nevertheless,
all three theoretical cross sections in this figure differ
significantly from the quadrupole Born curve, and it
remains to be seen to what extent any of these results is
consistent with existing transport data.

V. CONCLUSION

In the present research we have extended to the e-N,
system the variationally determined nonpenetrating
(BTAD) polarization potential that we originally applied
to e-H, scattering and have compared cross sections cal-
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FIG. 6. Rotational excitation cross sections for e-N,
scattering. (a) Cross sections for elastic scattering from initial
state jo=0 (solid curve) and for totational excitation from this
state to final states j =2 (long-dash curve) and j =4 (short-dash
curve). (b) Low-energy cross sections for jo=0—j=2 from
the present BTAD (solid curve) and CP (long-dash curve) cal-
culations and from the polarized orbital study of Onda (Ref.
78) (stars). The short-dash curve was computed using the
quadrupole Born approximation (Ref. 81) and the dotted curve
using the polarized-Born formula (Ref. 82).

culated with this potential to a variety of experimental
data. The BTAD potential appears presented in two
forms convenient for future studies: tabular (Table III)
and a simple analytic (fitted) function [Eqs. (21)].

The scattering calculations reported here are based on
the BF-FN formulation of electron-molecule theory and
include exchange effects exactly via an implementation
of the linear-algebraic prescription of Schneider and Col-
lins.* When used with a near-Hartree-Fock static poten-

TABLE IX. Low-energy theoretical rotational excitation
e-N; cross sections o Jo—i (in square angstroms) based on FN T

matrices calculated with the BTAD potential and exact ex-
change at R =2.068a, (including 3, II, and A symmetries).
These data were determined via the adiabatic nuclear rotation
theory (see Sec. IV C3). Only results for energies below 1.0 eV
are shown, but a more complete table, including energies up to

13.6 eV, is available on request from the authors.
(1.0[ —04]=1.0x 10"%)

E (eV) 090 Go-2 [of o T0-6
0.0100 1.711 0.121 0.827[—03]

0.0200 2.265 0.199 0.864[—03] 0.632[—04]
0.0300 2.704 0.219 0.671[—03] 0.648[ —04]
0.0400 3.070 0.222 0.458{—03] 0.583[ —04]
0.0500 3.393 0.222 0.399[—03] 0.104[ —03]
0.0600 3.684 0.225 0.300[—03] 0.966[ —04]
0.0700 3.950 0.229 0.240[—03] 0.893[—04]
0.0800 4.195 0.232 0.202[—03] 0.811[—04]
0.1000 4.633 0.236 0.715[—04] 0.147[—04]
0.1360 5.287 0.240 0.714]—04] 0.494[ —05]
0.1500 5.508 0.242 0.775[—04] 0.616[ —05]
0.2720 6.923 0.260 0.197[—03] 0.273[—05]
0.3500 7.527 0.274 0.432[—03] 0.238[—05]
0.5500 8.524 0.311 0.236[—02] 0.992[ —06]
0.6800 8.928 0.337 0.574[—02] 0.762] —06]
1.0000 9.565 0.407 0.349[—02] 0.200[—05]

tial, this formulation leaves three principal areas of un-
certainty: (i) the target is uncorrelated; (ii) vibrations of
the target are excluded, and (iii) polarization effects are
treated approximately. The focus of the present study is
on the last of these matters.

The comparisons in Figs. 2—5 of theoretical and ex-
perimental integrated total and momentum transfer
cross sections and of differential elastic cross sections
show that the BTAD potential consistently yields results
in excellent agreement with existing data. Rotational ex-
citation, however, remains a source of concern, in light
of the significant differences evident in Fig. 6 between
the BTAD cross sections and the PO results of Onda.”®

Within the context of these BTAD studies, we have

also examined two other model polarization
potentials—the CP potential of O’Connell and Lane!*
and the parameter-dependent phenomenological form
(7)—in numerically and physically consistent scattering
calculations.
- We have confirmed the observations of Padial and
Norcross'® that the CP potential produces cross sections
in excellent agreement with experimental data and have
compared this potential and the cross sections it yields
to those of our (quite different) variational nonpenetrat-
ing model. In this regard, we note that the CP model is
by far the simplest of existing parameter-free models to
calculate.

An important, as-yet-unresolved "question concerning
the CP potential concerns its accuracy in calculations of
cross sections for vibrational excitation. The only exist-
ing study to directly address this question is that of
Morrison and Saha,®! who used the BTAD and CP po-
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tentials to calculate vibrational excitation e-H, cross
sections. Their finding—that e -H, cross sections exhibit
high sensitivity to the polarization component of the in-
teraction potentials—argues for similar investigations on
other systems, and we have made tests of the CP poten-
tial a part of our forthcoming study of vibrational exci-
tation of N,.

Indeed, the primary limitation of the present calcula-
tions is probably our imposition of the rigid-rotator ap-
proximation, which prohibits vibrations of the target
and its dynamical interaction with the projectile. To
rectify this shortcoming we are currently generating
BTAD potentials for a range of internuclear geometries
for use in calculations of vibrational excitation and other
cross sections. :
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