Low-energy Charged Particles in Atomic and Molecular Gases

Michael A. Morrison, R. E. Robson, and R. D. White

Contents

Version 2.12: February 13, 2006

Preface

- 1. INTRODUCTION
 - A. Motivation for studying charged particles in gases: applications to science and technology
 - B. Swarms vs plasmas
 - C. Historical survey of theory and experiment
 - D. Theme: microscopic collision properties reflected in macroscopic transport properties
 - E. Outline of contents
- 2. EXPERIMENTAL CONSIDERATIONS AND APPLICATIONS
 - A. Measurement vs theory
 - B. Single-scattering beam experiments
 - C. Drift-tube experiments: time-of-flight, steady-state Townsend, Cavallieri, and Frank-Hertz
 - D. Gas discharges and plasma processing
 - E. Other applications: multi-wire drift chambers, muon-catalyzed fusion

Part A: Foundations–Microscopic Considerations

3. COLLISIONS IN ATOMIC AND MOLECULAR GASES

- A. Low-energy scattering processes and their cross sections
- B. Characteristic behavior of low-energy cross sections
- C. Threshold laws
- D. Modified effective-range theory for atoms and molecules
- E. Simple parameter-dependent models of near-threshold cross sections for use in transport analysis
- 4. ESSENTIALS OF COLLISION THEORY
 - A. Quantum-mechanical definitions of cross sections and other fundamental scattering quantities
 - B. Time-reversal and parity invariance and their consequences for cross sections
 - C. The electron-target interaction potential
 - D. Effects of constituents of the interaction potential on low-energy cross sections
 - E. The special role of the point charge-induced dipole interaction
 - F. Boundary conditions and scattering quantities
 - G. Quantum-mechanical description of collision dynamics: scattering from a central potential
 - H. Quantum-mechanical description of collision dynamics: scattering from a non-central potential
 - I. Quantum-mechanical description of collision dynamics: scattering from an atom
 - J. Quantum-mechanical description of collision dynamics: scattering from a molecule
 - K. Special phenomena in low-energy collisions: resonances, virtual states, Ramsauer-Townsend minima
 - L. The relationship between particle-particle cross sections and quantities measured in crossed-beam experiments
- 5. COLLISIONS BETWEEN HEAVY PARTICLES
 - A. Classical treatment of ions: from interaction potentials to cross sections
 - B. The impact-parameter representation
 - C. The semi-classical description of a collision

6. ESSENTIAL ATOMIC STRUCTURE FOR LOW-ENERGY COLLISIONS

- A. Qualitative atomic structure: the shell model
- B. Characteristic values of quantities that describe atoms in their ground states
- C. An overview of the quantum mechanics of atomic structure I: the independent-particle model
- D. Atomic orbitals and the limitations of the shell model
- E. An overview of the quantum mechanics of atomic structure II: beyond the independent-particle model
- F. Electron correlation in atoms
- G. Excited, metastable, and Rydberg states of atoms
- H. Energy levels and spectra of atomic ions
- I. Negative ions
- J. Atoms in external fields
- 7. ESSENTIAL MOLECULAR STRUCTURE FOR LOW-ENERGY COLLISIONS
 - A. The Born-Oppenheimer approximation and its limitations
 - B. Electronic states of molecules in the Born-Oppenheimer approximation
 - C. Molecular symmetry for diatomic and polyatomic molecules
 - D. Classification and term symbols for electronic states of molecules
 - E. Born-Oppenheimer potential energies and their limitations
 - F. The Franck-Condon approximation
 - G. Rovibrational states of molecules in the Born-Oppenheimer approximation
 - H. Molecular properties: spectroscopic constants and polarizabilities
 - I. Characteristic values of quantities that describe low-lying electronic states of molecules and their rotational, and vibrational energy levels
 - J. Dissociation, ionization, and related rearrangement processes in molecules
 - K. Molecular orbitals and their conceptual limitations
 - L. Electron correlation in molecules
 - M. Beyond the Born-Oppenheimer approximation: "exact" molecular structure
 - N. Molecules in external fields

8. ELECTRON-ATOM SCATTERING: PHYSICS AND CHARACTERISTIC EXAMPLES

- A. A closer look at the Schrödinger equation and boundary conditions
- B. The Born and distorted-wave approximations
- C. Variational methods
- D. Eigenfunction expansion methods
- E. The role of exchange, correlation, and polarization
- F. Characteristic features of elastic integral and differential cross sections
- G. Examples of resonance phenomena, threshold behavior, and Ramsauer-Townsend minima

9. ELECTRON-MOLECULE SCATTERING: PHYSICS AND CHARACTERISTIC EXAMPLES

- A. A closer look at the Schrödinger equation and boundary conditions
- B. Elastic scattering
- C. Momentum transfer cross sections
- D. Rotational excitation
- E. Vibrational excitation
- F. Dissociative and other rearrangement processes
- G. Characteristic features of elastic integral and differential cross sections for various electron-molecule scattering processes

Part B: Foundations-Macroscopic Considerations

10. KINETIC THEORY: BRIDGING THE MICROSCOPIC-MACROSCOPIC GAP

- A. The role of kinetic theory in statistical mechanics
- B. Phase space, distribution functions, moments, the mean free path, cross section, and collision rate
- C. Collision moments for an arbitrary quantity
- D. The Boltzmann equation: derivation and assumptions
- E. The H-theorem, the Maxwellian distribution of velocities
- F. The Fokker-Planck equation, Lorentz gas, Rayleigh gas
- G. Charge exchange, the collision operator in the relaxation-time model
- H. Inelastic collisions, the Wang-Chang et al. semiclassical collision operator, the Maxwell-Boltzmann distribution of internal states, finite-difference formulation for light particles
- I. Quantum kinetic equations (Waldmann-Snider) for a Fermi-Dirac gas and for a Bose-Einstein gas

11. THE HYDRODYNAMIC REGIME AND TRANSPORT COEFFICIENTS

- A. Moment equations
- B. The hydrodynamic regime; density gradient expansion
- C. Transport coefficients: definitions, and reaction rates
- D. The hierarchy of hydrodynamic kinetic equations
- E. The diffusion equation and its solution for various experimental arrangements
- F. Non-hydrodynamic situations
- 12. MATHEMATICAL AND NUMERICAL METHODS
 - A. Tensor structure and geometrical symmetries
 - B. Orthogonal-function expansions
 - C. Representation of Boltzmanns equation
 - D. Burnett-function representations of Boltzmanns equation
 - E. The collision matrix, the Talmi transformation
 - F. Discrete-ordinate representations
 - G. Variational methods

Part C: Analytic and Approximate Calculations

13. MODEL KINETIC EQUATION SOLUTIONS

- A. Why use models?
- B. Exact transport coefficients for the constant-collision-frequency model
- C. Exact analytic solution of a model kinetic equation for hydrodynamic and non-hydrodynamic regimes in the time-of-flight experiment
- D. Exact analytic solution for the kinetic equation in the idealized charge-exchange model in a radio-frequency field
- 14. MOMENTUM TRANSFER THEORY AND APPLICATIONS
 - A. Approximation of the collision moments
 - B. The Wannier energy relation
 - C. Ficks law and the generalized Einstein relations
 - D. Blancs law for gas mixtures
 - E. Negative differential conductivity
 - F. Tonks theorem and the equivalent field approximation
 - G. Radio frequency fields; the effective field

15. REACTIVE EFFECTS

- A. Balance equations with reactive terms
- B. Attachment and ionization cooling
- C. Reactive corrections to transport properties: the two types of transport coefficients

16. FLUID MODELING OF PLASMAS AND SWARMS

- A. The need for consistency with the swarm limit
- B. Use of swarm data in plasma models
- C. Ambipolar diffusion
- D. Fluid modeling of stead-state Townsend and Franck-Hertz experiments

Part D: Numerical Calculations and Applications

17. SOLUTION OF BOLTZMANN EQUATION FOR LIGHT CHARGED PARTICLES

- A. Energy exchange; the spherical-harmonic representation in speed space
- B. The Lorentz gas, the "two-term" approximation, and the need for a "multi-term" theory
- C. Examples of hydrodynamic transport coefficients and distribution functions: e^--CH_4 , e^--H_2O , e^+-Ar , muon-deuterium, etc.
- D. Reactive effects
- E. Crossed electric and magnetic fields
- F. Time-varying fields; anomalous anisotropic diffusion
- G. The Franck-Hertz experiment
- 18. BOUNDARY CONDITIONS, TRANSPORT PROPERTIES AND DIFFUSION COOLING
 - A. General comments on boundary conditions
 - B. The Cavalleri experiment and diffusion cooling
 - C. The eigenvalue problem for zero field
 - D. The variational method
 - E. Diffusion cooling with an alternating electric field
 - F. Concluding remarks

19. ION TRANSPORT

- A. Historical review
- B. The importance of having a unified approach for ions and electrons
- C. Two- and three-temperature theories
- D. The mass-ratio expansion
- E. Selected examples

20. FURTHER APPLICATIONS

- A. Hot-atom chemistry
- B. Muon catalyzed fusion
- C. Positrons in gases
- D. Oddities: negative absolute mobility, countergradient flow

Part E: Back to Atomic and Molecular Physics

- 21. DETERMINATION OF CROSS SECTIONS AND INTERACTION POTENTIALS FROM TRANSPORT DATA
 - A. The importance of determining charged-particle cross sections
 - B. The importance of swarm data
 - C. Inversion methods
 - D. Uniqueness problems

Appendices

- A. Data resources for cross sections
- B. Summary of vector calculus
- C. Summary of tensors and dyadics
- D. Summary of non-relativistic quantum mechanics for bound and scattering states
- E. List of symbols
- F. Physical constants, units, and conversion factors

Bibliography

Index