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Inclusion of nonadiabiatic effects in calculations on vibrational excitation of molecular hydrogen
by low-energy electron impact

S. Mazevet,1 Michael A. Morrison,1,* Olen Boydstun,1 and R. K. Nesbet2
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The nonadiabatic phase matrix method offers a unified, systematic treatment of vibrational dynamics in
calculations of low-energy inelastic electron-molecule cross sections. This formalism uses fixed-nucleiR
matrices to describe the region of configuration space near the target but—unlike its fully adiabatic counterpart,
the energy-modified adiabatic method—includes nonadiabatic effects, which are important for resonant scat-
tering and near a vibrational threshold. A most stringent test of this method ise-H2 scattering below 10 eV,
where elastic and inelastic cross sections exhibit an enhancement around 3 eV which at the fixed-nuclei level
involves a range of physical effects, from nonresonant to resonant scattering, as the internuclear separation
varies from the smallest to largest relevant values. Here we describe an implementation of this method
appropriate to such systems, an assessment of its accuracy fore-H2 scattering, and an appraisal of the impor-
tance of nonadiabatacity for the 0→1 and 0→2 vibrational excitations.@S1050-2947~99!08901-5#

PACS number~s!: 34.80.Bm, 34.80.Gs
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I. INTRODUCTION

Electron scattering by the hydrogen molecule has b
studied extensively by both theorists and experimenta
~for reviews and references, see Refs.@1–3#!. Although H2 is
the simplest of all neutral molecular targets, the presenc
a fixed-nuclei shape resonance around 3 eV whose w
varies drastically with internuclear separation presents a c
siderable challenge to the theory of vibrational excitat
from the ground state@4#. Direct calculation of the2Su com-
plex potential-energy function, using quantum chemis
techniques such as the complex self-consistent-field me
@5,6#, indicate that this resonant state interacts strongly w
the electron-scattering continuum for small values of int
nuclear separation, but becomes bound for internuclear s
rations around 3a0 @7#.

This 2Su resonance enhances inelastic cross sections
excitation to low-lying vibrational states, induces a stro
resonant structure in the cross sections for excitation
higher vibrational states@8#, and is primarily responsible fo
dissociative attachment into H and H2 @3#. Different theoret-
ical formalisms and computational methods have been u
to treat various consequences of this resonance, each ad
to a particular situation. For excitation to low-lying vibra
tional states, modified adiabatic methods such as the fi
order nonadiabatic method@9,10# and the energy-modified
adiabatic phase matrix method~EMAP! @11–13#, which al-
low for the transfer of kinetic energy to nuclear motion du
ing an inelastic process but neglect explicitly nonadiaba
effects, are appropriate. However, for deep inelastic sca
ing or for dissociative attachment, it is expected that a fu
nonadiabatic theory such as vibrational close coupling
necessary, in order to describe the relatively strong coup
between electronic and vibrational motion. Due to the di
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culty of including continuum channels in a close-coupli
formalism, even fore-H2 scattering, alternative method
such as the projection operator method@3,14,15# have been
used. This paper concerns the extension to extremely b
resonances such as the one in thee-H2 system of an alterna
tive treatment, the nonadiabatic phase matrix~NADP!
method@16–18,13#.

The NADP method has previously been applied to
narrower resonance structures observed in low-energye-N2

scattering@18#. Its advantage for electron-impact vibration
excitation of e-H2 in the 2Su symmetry @13# is that this
method includes nonadiabatic physics within a formulat
which consistently treats the entire range of physical effe
that influencee-H2 cross sections as the internuclear sepa
tion R varies, from strongly resonant scattering at largeR to
purely background scattering at smallR.

The NADP method derives this advantage from the use
R matrices to treat the region near the target.~For an alter-
native R-matrix-based formalism for the inclusion of non
diabatic effects, see Refs.@19,20#.! In a NADP calculation,
body-frame fixed-nucleiR matrices are used to define pha
matrices at eachR. Each phase matrix is decomposed ad
tively into foreground part and background parts. The lat
is then converted to a vibronic background phase matrix
ing the EMAP approximation@21#. Following this method-
ology, the foreground fixed-nuclei phase matrix is also co
verted to a foreground vibronic phase matrix by replac
functional forms determined by the electron continuum e
ergy by matrix expressions defined by an operator wh
explicitly contains the vibrational kinetic-energy operato
The NADP procedureper seneed be applied only to the
resonant symmetry; nonresonant symmetries can be tre
with the EMAP method. The case ofe-H2 scattering is par-
ticularly appropriate to calibrate this methodology because
the diversity of the effects in2Su scattering below 10 eV.

In Sec. II we outline the theoretical foundation of th
EMAP and NADP methods and the role of theR matrix in
477 ©1999 The American Physical Society
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478 PRA 59MAZEVET, MORRISON, BOYDSTUN, AND NESBET
these approximations. Section III is concerned with th
implementation fore-H2 scattering. In Sec. IV we concen
trate on tests of the validity of the NADP and EMAP met
ods for excitation of low-lying vibrational states of H2 . Here
we report a systematic comparison of EMAP and NAD
total and differential cross sections with benchmark bo
frame vibrational close-coupling calculations@22#. To ensure
meaningful comparisons among these methods, all calc
tions use the same Hartree-Fock ground-state H2 wave func-
tion, the same representation of the static, exchange,
correlation polarization terms in thee-H2 interaction poten-
tial, and comparable numerical precision.

II. THEORY

In the continuum Born-Oppenheimer approximation@23#,
where the vibrational and rotational kinetic energy operat
are neglected in equations for the scattering function,
coupled radial integrodifferential equations for an electr
scattered by a diatomic molecule, written in the usual bo
fixed reference frame with thez axis coincident with the
internuclear axis, are@1#

F d2

dr2
2

l ~ l 11!

r 2
1kb

2Gul ,l 0
~r ;R!

52(
l 8

@Vl ,l 8~r ;R!1V̂l ,l 8~r ;R!#ul 8,l 0
~r ;R!, ~1!

where the semicolon denotes the parametric status ofR, the
value of which is fixed in this approximation. The subscr
l 0 denotes the entrance channel, andkb

2/25e is the energy
of the projectile in the body frame~in Hartree units!. The
quantum numberl corresponds to the electronic angul
momentum of the scattering electron, andL to its projection
along the internuclear axis. The coupling potential mat
elements are Vl ,l 8(r ;R) for the static plus ~local!
correlation-polarization potential andV̂l ,l 8(r ;R) for the
nonlocal exchange operator. We suppress the dependen
all matrix elements, radial functions, and scattering qua
ties onL and on the parity of the system, it being understo
that all fixed-nuclei quantities are referred to particular v
ues of these quantum numbers.

The fixed-nuclei R matrix for a particular electron
molecule symmetry, internuclear separationR, and electronic
continuum energye, is defined by@24,25#

ul ,l 0
~r 0 ;R!5(

l 8
Rl ,l 8~e;R,r 0!F d

dr
ul 8,l 0

~r ;R!G
r 5r 0

.

~2!

The sum over l 8 includes values consistent with th
electron-molecule symmetry under consideration~e.g., for
the Su symmetry, l 851,3, . . . ). In the EMAP method
fixed-nuclei matrices become operators in the nuclear c
dinates @18#. Matrix elements of these operators are th
evaluated between vibrational wave functions. In order
avoid integrating over poles, the fixed-nucleiR matrix is re-
placed by thedimensionlessfixed-nuclei phase matrix de
fined by the matrix relation
ir
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tanF~e;R,r 0!5kb
1/2R~e;R,r 0!kb

1/2, ~3!

wherekb is a diagonal matrix of~body-frame! wave numbers
kb5A2e. This definition differs from that given previousl
@17# by the energy-dependent factors ofkb

1/2, which render
F dimensionless.

In conventional scattering theory for a spherical intera
tion potential, phase shifts are defined relative to free wa
via the usual asymptotic boundary conditions@26#. In con-
ventional electron-molecule scattering theory, where the
teraction potential is nonspherical, the analogous quantit
the eigenphase sum, which is calculated from the asympt
K matrix ~see Ref.@27#, and references therein!. The fixed-
nuclei phase matrixF(e;R,r 0), however, is absolute in tha
it contains the variation withR ande due to the free-electron
phase matrix. Relation~2! indicates that, for a free electron
the R matrix is diagonal with elements proportional to th
inverse logarithmic derivative of Ricatti-Bessel functio
with argumentl ,

Rl ,l 8
FE

~e;r 0!5
j l ~kbr 0!

j l 8~kbr 0!
d l ,l 8 . ~4!

As a consequence of definition~3!, the free-electron phas
matrix is a diagonal matrix whose elements are proportio
to the inverse tangent of the inverse logarithmic derivative
Ricatti-Bessel functions with argumentl ,

F l ,l 8
FE

~e;r 0![tan21FA2e
j l ~kbr 0!

j l 8~kbr 0!
Gd l ,l 8 . ~5!

To facilitate resonance analysis fore-H2 scattering, it is
useful to subtract the contribution of the free-electron ph
matrix from the fixed-nuclei phase matrix. This subtracti
defines themodifiedphase matrix~denoted by the tilde!

F̃~e;R,r 0![F~e;R,r 0!2FFE~e;r 0!. ~6!

Were theR matrix radiusr 0 extended to infinity, the modi-

fied fixed-nuclei phase matrixF̃(e;R,r 0) would correspond
to the usual eigenphase matrix obtained from the asympt
reactance matrixK . For finite r 0 , however, the modified
phase matrix incorporates the effects of electron-molec
interactions in the inner region only.

Fixed-nuclei resonances correspond to local maxima
the energy derivative of the eigenphase sum@28,29#. By ap-
plying resonance analysis to the modified phase matrix~6!,
which corresponds to theR matrix radiusr 0 , we can define
the energy and width of a ‘‘precursor resonance’’ at ea
internuclear separation@17#. Each fixed-nuclei precurso
resonance can be associated with a physical scattering
nance~if one exists! when theR-matrix radiusr 0 is extended
to infinity. Applying a single-pole Breit-Wigner resonanc
analysis to the modified fixed-nuclei phase mat

F̃(e;R,r 0) at e res(R,r 0), we can determine the resona
channel eigenvectory(R,r 0) and width g(R,r 0) from the
eigenvalue equation@30#

d

de
F̃~e;R,r 0!ue5eres

y~R,r 0!5
2

g~R,r 0!
y~R,r 0!. ~7!
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This precursor resonance analysis can be used to de
pose the phase matrixF̃(e;R,r 0) into a rapidly varying part,
the foreground phase matrixF̃1(e;R,r 0), and a slowly vary-
ing background part. The foreground phase matrix then
sumes the form

F̃1~e;R,r 0!5y~R,r 0!tan21F g~R,r 0!

2@e res~R,r 0!2e#Gy†~R,r 0!.

~8!

The background phase matrix is defined by subtraction a

F̃0~e;R,r 0![F~e;R,r 0!2F̃1~e;R,r 0!. ~9!

The method presented here prescribes, for both the b
ground and foreground phase matrices, the formal repla
ment of the fixed-nuclei electronic energye by the operator
@21#

ê[E2Ĥ~v !, ~10!

whereĤ(v) is the vibrational Hamiltonian. This operator ac
on functions of the vibrational coordinates. The foregrou
vibronic phase matrix is therefore constructed using a co
plete set of eigenfunctionsxs(R) obtained by solving the
eigenvalue equation

@Ĥ~v !1e res~R,r 0!#xs~R!5Esxs~R! ~11!

at r 0 in a basis of spline-delta functions@31#. @For clarity, we
suppress the dependence ofxs(R) and Es on theR-matrix
radius r 0 .# The (v,v8) block of the vibronic foreground
phase matrix is then calculated from

F̃v,v8
1

~E;r 0!5tan21(
s

^fvuy~R,r 0!g1/2~R,r 0!uxs&

3
1

2~Es2E!
^xsug1/2~R,r 0!y†~R,r 0!ufv8&.

~12!

The separation of g(R,r 0) into the product
g1/2(R,r 0)g1/2(R,r 0) is essential for the extension of th
method to dissociative attachment, and has been discuss
Ref. @17#.

The vibronic background phase matrix is obtained us
the EMAP method, according to which the matrix eleme
are

F̃vl ,v8l 8
0

~E!5^fvuF̃ l ,l 8
0

~e;R,r 0!ufv8&. ~13!

Because threshold behavior has been already introduce
the modified phase matrix~6!, it is appropriate here to
choose the continuum energye as the geometric mean@21#

ev,v8[@~E2Ev!~E2Ev8!#
1/2. ~14!

Finally, the (v,v8) submatrices of the resulting vibronicR
matrix are calculated from the matrix relation
m-

s-

k-
e-

d
-

in

g
s

in

Rv,v8~E!5kv
21/2tan@F̃v,v8

0
~E!1F̃v,v8

1
~E!

1FFE~E!dv,v8#kv8
21/2. ~15!

Note that, in this equation, the free-electron phase mat
which is independent of the internuclear separation, has b
reintroduced. The energy-dependent factors (kvkv8)

21/2 in
each (v,v8) submatrix result from the definition of the d
mensionless fixed-nuclei phase matrix. It is important to n
that in this analysis the threshold behavior of the scatter
matrices arises from the free-electron phase matrix. The
modified R matrix, used in previous versions of the EMA
and NADP methods, does not contain information relevan
physical boundary conditions outside theR-matrix radiusr 0 .
Similarly, in the vibronicR matrix given by Eq.~15!, branch-
point behavior above each vibronic channel threshold is c
celed by these energy-dependent factors. Analytic contin
tion into closed channels below threshold should remove
apparent branch points.

III. IMPLEMENTATION

The coupling potentials in the integrodifferential equ
tions ~1! contain static, exchange, and correlatio
polarization terms. We calculate each component of thee-H2
interaction potential from near-Hartree-Fock electron
ground-state target wave functions on a grid of internucl
separationsR determined by the probability density of th
ground vibrational state. To obtain these electronic functio
we solve the electronic Schro¨dinger equation of the molecul
variationally @32# using a symmetry-adapted basis of co
tracted nucleus-centered Gaussian type orbitals. This b
includes compact polarization functions that allow for bo
formation @33# in the neutral molecule. When used to dete
mine the polarization potential described below, this basi
augmented by additional diffuse functions to allow for d
tortion of the neutral by the scattering electron. We us
(5s2p/3s2p) basis for the neutral and a (6s3p/4s3p) basis
for the polarized molecule. The exponents and contrac
coefficients for these bases appear in Table I of Ref.@34#.
The quadrupole moment produced by the resulting static
tential, averaged over the ground-state vibrational~Morse!
wave function of the target, is 0.4772ea0

2 , as compared to
the experimental value@35,36# of (0.470460.034)ea0

2 . We
treat the exchange potential rigorously as a nonlocal oper
@37,38#, using in the exchange kernel the same~unaug-
mented! near-Hartree-Fock molecular orbitals as were us
to calculate the static potential~for details, see Ref.@27#!.

The final component of our interaction potential accou
for ~long-range! polarization and~short-range! correlation
and dynamic distortion effects with a local, energ
independent potential. This function includes alladiabatic
polarization effects exactly via linear variational calculatio
on the polarized and unpolarized target~Refs.@34,39# detail
the calculation of these potentials fore-H2). This potential
further allows for nonadiabatic~correlation! effects via a
non-penetrating approximation@40# according to which the
two-electron bound-free electrostatic interactions are se
zero whenever the radial coordinate of the projectile is l
than that of the one-particle density function of the targ
For e-H2, this potential can be very accurately represen
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by thedipole term in the moment expansion of this potent
@39#; hence we have adopted the form christened by Gib
and Morrison @34,39# the ‘‘better-than-adiabatic dipole’
~BTAD! potential. This potential is parameter free. Analy
forms for the equilibrium BTAD potentials fore-H2 are
given in Eqs.~6! and ~7! of Ref. @41#. From the asymptotic
form of this potential at eachR we extract the polarizabilities
a0(R) and a2(R). The averages of these values over t
ground vibrational state are 5.4367a0

3 and 1.4575a0
3 , respec-

tively. These polarizabilities can be assessed by compar
to the experimental values (5.426360.02)a0

3 for the spheri-
cal polarizability, as determined from measurements of
refractive index at 290 K@42#, and (1.356760.0023)a0

3 for
the nonspherical polarizability, as determined in molecu
beam resonance experiments@43#.

We calculate the vibrational wave functions in the vibr
tional close-coupling~VCC! and adiabatic~EMAP, NADP!
calculations reported here from the Morse potential

V~R!5De~e22ax22e2ax!, ~16!

where x[(R2Re)/Re . For H2 , the dissociation energy a
equilibrium is De50.1819Eh , and the parametera, deter-
mined from measured spectroscopic constants@44#, is a
51.4110.

Fixed-nuclei R matrices are constructed at a radiusr 0
510.0a0 for a grid of 45 electronic energies which va
from 0.005 to 10.0 eV. For H2 , this R-matrix radius ensures
that the molecular bound-state wave functions have ef
tively vanished atr 0 , and consequently that exchange
fully included in the inner region. For scattering in thePu
andSg symmetries, fixed-nucleiR matrices are calculated a
internuclear separations 0.5a0 , 0.8a0 , 1.0a0 , 1.2a0 , 1.4a0 ,
1.6a0 , 1.8a0 , 2.0a0 , 2.2a0 , 2.4a0 , and 2.5a0 . To account
for the rapid variation of the fixed-nuclei phase matrix as
function of internuclear separation in theSu symmetry, ad-
ditional fixed nuclei R matrices are included for internucle
separations 0.7a0 , 0.9a0 ,1.1a0 , 1.3a0 , 1.5a0 ,1.7a0 , 1.9a0 ,
2.1a0 , and 2.3a0 .

At each value of the fixed-nuclei electronic energy and
the internuclear separation, the fixed-nucleiR matrices, mul-
tiplied by an appropriate energy factor as in Eq.~3!, are
diagonalized, and fixed-nuclei phase matrices are constru
from the inverse tangents of the eigenvalues using the co
sponding eigenvectors. Multiples ofp are added to the re
sulting eigenvalues in order to ensure a smooth varia
with both energy and internuclear separation. If the fixe
nuclei R matrices have degenerate eigenvalues at partic
values of electronic energy and internuclear separation,
additional multiples ofp are added over the whole energ
range and for all internuclear separations, in order to ens
a smooth variation of the phase matrix in regions wh
R-matrix eigenvalues exhibit avoided crossings. Far fr
such regions, the matrix of eigenvectors is close to a u
matrix. In this situation, multiples ofp can be added inde
pendently to each of the eigenvalues, i.e., to the fixed-nu
phase matrix. In contrast, when the eigenvalues of the fix
nucleiR matrix exhibit avoided crossings, the correspond
matrix of eigenvectors deviates significantly from a unit m
trix. In such situations, the independent addition of multip
l
n
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of p to each inverse tangent of the eigenvalues results
adding nonintegral multiples ofp to the phase matrix.

Outside theR-matrix region (r .r 0), powerful computa-
tional methods facilitate solving the scattering equations
to a matching radius in the asymptotic region where the s
tering matrix can be extracted. In this outer region, we
plicitly allow for vibrational coupling, including vibrationa
states in the coupled equations forv<3. Here the interaction
potential is local, a combination of terms due to perman
multipole moments of the target~predominantly the quadru
pole interaction! and terms due to polarization distortions
the target induced by the projectile, which in this region c
be considered to move adiabatically with respect to th
distortions @45#. For low-energye-H2 scattering, one need
include only the induced polarizability interaction@34#. The
vibronic R matrix @Eq. ~15!# at r 15100a0 is calculated from
its counterpart at the boundary of theR-matrix region r 0
using standardR-matrix propagation methods@46–49#. For
large enough radial values (r .r 1.r 0), these adiabatic po
larization potentials reduce to their analytic multipolar form
@39#. In this outermost region, beyondr 1 , the coupled scat-
tering equations can be solved by asymptotic expansio
which are evaluated analytically by converting the~diver-
gent! asymptotic series to continued fractions@50–52#.

To complete the description of the scattering matrix,
require elements for symmetries other than the lowest th
(Sg , Su , andPu), and for partial waves within these thre
symmetries of order higher than are required to converge
fixed-nucleiR matrix at r 0 . ~In the present fixed-nuclei cal
culations forr<r 0 we include four partial waves per sym
metry.! We calculate these additionalK-matrix elements us-
ing the first Born approximation which, because of t
centrifugal barrier term in the effective Hamiltonian for th
scattering electron, gives accurate approximations
K-matrix elements at any scattering energy for sufficien
high l ~for further discussion, see Refs.@53# and @54#!.

Figure 1 shows the variation in theSu symmetry of the
precursor eigenphase sum as a function of the fixed-nu
electronic energye and internuclear separationR. We em-
phasize that this quantity is not the physical eigenphase
one would calculate from the asymptoticK matrix @28#;
rather it is the analogous quantity calculated from the fix
nuclei phase matrix at theR-matrix boundaryr 0510a0 . This

FIG. 1. The precursor eigenphase sum fore-H2 scattering in the
Su symmetry evaluated from fixed-nuclei phase matrices atr 0

510a0 .
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quantity is a smooth function of bothe andR. For each value
of the internuclear separation, theSu eigenphase sum in
creases rapidly with increasing energy. This behavior is
pecially pronounced at large values ofR, where the precurso
eigenphase sum shows a rapid variation for energies f
threshold to around 1.0 eV. This characteristic behavior
the eigenphase sum above threshold and at internuclear
rations near 2.5a0 corresponds to a true fixed-nuclei res
nance whenr 0 is extended into the asymptotic region.

As the internuclear separation decreases, however,
precursor resonance structure vanishes for values of inte
clear separation less than 2.0a0 ; there the precursor eigen
phase sum tends to a smooth function of the energy.
understand the behavior of this quantity better, it is usefu
consider its counterpart for a free electron.

In Fig. 2~a!, we show the variation of diagonal elemen
of the free-electron phase matrix calculated atr 510a0 for
partial wave ordersl 51, 3, and 5, the dominant contribu
tions to theSu precursor eigenphase sum. As expected fr
Eq. ~5!, the diagonal elements of the phase matrix are n

FIG. 2. ~a! Free-electron eigenphase shifts and their sum~solid
line! for the dominant partial waves of scattering in theSu symme-
try, l51, 3, and 5.~b! Fixed-nucleiSu precursor eigenphase sums
the extreme values of internuclear separation that are relevant t
0→1 and 0→2 excitations,R50.5a0 andR52.5a0 . Also shown
is the sum of the free-electron eigenphases~open circles! from ~a!
~solid line!.
s-

m
f
pa-

is
u-

o
o

-

linear functions of the energye that exhibit characteristic
behavior near threshold due to the energy-dependent fa
k5A2e. In Fig. 2~b!, we compare theSu eigenphase sum
for our smallest and largest values ofR, 0.5a0 and 2.5a0 , to
the sum of the diagonal elements of the free-electron ph
matrix to theSu symmetry. This comparison indicates th
the variation of the precursor eigenphase sum is largely
termined by that of the corresponding free-electron eig
phase sum. By considering the difference between these
quantities, we see that, like the asymptotic eigenphase s
the precursor eigenphase sum of Fig. 2 shows a pronoun
resonance structure near threshold for large values ofR. By
contrast, for small values ofR the precursor resonance
superimposed on a strongly decreasing background an
difficult to characterize.

This point is reinforced in Fig. 3~a!, which shows the
variation of themodifiedphase matrix~the fixed-nuclei phase
matrix minus the free-electron matrix! as a function ofe and
R. This variation closely resembles that of the asympto
eigenphase sums calculated from theSu K matrix @13#. It is
important to recall that the quantity shown in Fig. 3~a! de-
pends on theR-matrix radius, and as such only includes t
effect of the potential in the inner region,r<r 0 . Figures 3~b!
and 3~c!, respectively, show the variation withR ande of the
background and foreground phase matrices obtained w
the precursor resonance analysis described in Sec. II is
plied to the modified phase matrix. These graphs dem
strate that this analysis leads to a background phase m
which varies smoothly withR ande, while the rapidly vary-
ing part of the modified phase matrix is described by
foreground phase matrix. This point further illustrates t
reason for using two different methods—the EMAP a
NADP approximations—to treat vibrational dynamics in t
background and foreground phase matrices, respectively

The variation with internuclear separation of the precur
resonance energy curve and the corresponding width
tained by the resonance analysis are shown in Figs. 4~a! and
4~b!. Figure 4~a! shows that the precursor resonance ene
curve differs from the potential of the target molecule for
internuclear separations. The corresponding width in F
4~b! increases rapidly with decreasingR, and the resonance
fades smoothly into the background and ceases to affec
vibrational dynamics significantly.Yet at these small value
of the internuclear separation the decomposition of t
phase matrix continues to be well defined, even though
physical effects are negligible.Electron scattering from H2 is
prototypical of situations in which a fixed-nuclei resonan
has a minimal influence on excitation to the first vibration
state. A comparison betweenv050 to v51 cross sections
from NADP and EMAP calculations in theSu symmetry is
therefore particularly useful as a test of this assumption
will be the subject of the next section.

Finally, we emphasize that the computational impleme
tation of relation~12! requires special care due to avoide
crossing in the eigenvalues of the vibronic foregroundR ma-
trix. It should be noted that this inconvenience depends
the system as well as on assumptions inherent in the inte
tion potential. It arises in the present application because
the large range of energies under consideration, from 0
10.0 eV. To overcome this difficulty, irregularities in th
foreground vibronic phase matrix~12! are identified by com-
parison to the equivalent transformation

the
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F̃v,v8
1

~E!5(
s,s8

tan21^fvuy~R,r 0!uxs&

3^xsuF g~R,r 0!

~Es2E!1~Es82E!
G uxs8&

3^xs8uy
†~R,r 0!ufv8&. ~17!

When found, irregular elements of the phase matrix are re
placed by values from this relation. Equation~17! is obtained
by twice introducing the complete set of eigenfunctions

FIG. 3. ~a! Modified precursor eigenphase sums fore-H2 scat-
tering in theSu symmetry, evaluated from fixed-nuclei phase ma-
trices at r 0510a0 by subtracting the free-electron phase matrix
from the fixed-nuclei precursor eigenphase matrix. This phase m
trix is decomposed into~b! background and~c! foreground parts, as
described in the text.
-

$xs(R)% in Eq. ~8!, and by choosing as the continuum ener
the arithmetic mean of the eigenvalues of the operatore res

2 ê. Despite this approximation, Eq.~17! allows a direct
construction of the vibronic phase matrix without the need
diagonalize the correspondingR matrix. Where valid, this
alternative procedure thus allows a construction of the
bronic foreground phase matrix even if the vibronic reson
R-matrix eigenvalues manifest avoided crossings.

IV. RESULTS

In this section we investigate the validity of the pha
matrix decomposition~9! and of the NADP method via a
systematic comparison of NADP integral and different
cross sections against results from its fully adiabatic coun
part, the EMAP method, and from fully nonadiabatic VC
calculations. We consider excitations to thev51 and 2
states. The thresholds for these states are 0.5156
1.001 127 eV, respectively@44#.

A. Integral cross sections

Partial integral cross sections in the dominante-H2 sym-
metries (Sg , Su , andPu) and their sum, as calculated usin
the NADP, EMAP, and VCC methods are shown in Fig.

a-

FIG. 4. ~a! The effective potential energy for the precursor res
nance~solid line!: the sum ofe res(R,r 0) and the ground electronic
state potential energy of H2 , represented by a Morse potential~long
dashed line! ~b!. Variation of the precursor resonance width fun
tion g(R,r 0) with internuclear separation. Both quantities were c
culated at theR-matrix radiusr 0510a0 .
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FIG. 5. Partial integral cross sections in the~a! Sg , ~b! Su , and~c! Pu symmetries for the 0→1 vibrational excitation of H2 and~d! their
sum. Results for the EMAP~short dashed line! and NADP~long dashed line! approximations are compared with benchmark VCC res
~solid line!.
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for v51 and in Fig. 6 forv52. These data are presented
selected energies in Table I; a full list is available from t
authors upon request. Comparison between the NADP
EMAP cross sections in Figs. 5 and 6 validates the dec
position of the fixed-nuclei phase matrix into foreground a
background parts even for small values of the internuc
separation, where no physical resonance appears in
~asymptotic! fixed-nuclei eigenphase sum. Furthermo
comparison to the VCC results shows that both the EM
and NADP methods provide a reliable description ofe-H2
partial cross sections even in the acutely sensitive ene
regime near threshold. Cross sections in this energy re
are especially sensitive to conservation of energy in the
lision; violation of this requirement is the reason for the fa
ure near threshold of the usual adiabatic-nuclear-vibra
approximation@2,55,56#.
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The EMAP approximation does not account rigorous
for the loss of kinetic energy of the continuum electron d
ing excitation; this energy loss is properly included in ad
batic theories that use off-shell fixed-nuclei scattering ma
ces, such as the first-order nondegenerate adiab
approximation @9,10#. However, the EMAP method im
proves on the conventional adiabatic-nuclei approximat
by calculating elements of the vibronic phase matrix at
ergies appropriate to each vibrational channel. In the pre
implementation, the geometric mean~14! of the eigenvalues
of the operatorê are used, so precise agreement of t
EMAP and VCC results is not expected. It should be not
however, that here, as in applications of the EMAP meth
directly to the asymptoticK matrix @13#, this procedure does
provide a reliable description of the inelastic cross sect
without imposing the computational burden of off-she
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FIG. 6. Same as 5 for the 0→2 excitation.
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fixed-nuclei scattering calculations. For both excitatio
VCC, NADP, and EMAP cross sections tend to the sa
values for scattering energies large enough that the los
kinetic energy of the continuum electron is negligible co
pared to the scattering energy, i.e., above about 7.0 eV.

For the 0→1 cross section in Fig. 5, comparison of VC
and NADP results confirms the ability of the NADP to in
corporate nonadiabatic effects for this excitation. The co
parison between EMAP and VCC results for this excitat
shows that nonadiabatic effects exert minimal influence
this cross section at energies near the enhancement at 3.

More interesting is the corresponding comparison of
0→2 cross sections in Fig. 6. For this excitation larger d
ferences are evident between NADP, EMAP, and VCC
sults, especially in the magnitude and position of the ma
mum in theSu and total cross sections. These differenc
clearly indicate that the fixed-nuclei resonance at large in
,
e
of
-

-

n
eV.
e
-
-
i-
s
r-

nuclear separations influences the 0→2 cross section more
than the 0→1 cross section—hence the need to account
nonadiabatic effects to describe the former process a
rately.

Although the maximum value of the 0→2 NADP cross
section appears in good agreement with its VCC counterp
a mild dip is evident in the NADP result at energies betwe
2.0 and 3.0 eV. Within the limits of the interaction potenti
used to calculate the fixed-nucleiR matrices, which is based
on a Hartree-Fock representation of the electronic gro
state wave function, the NADP method appears to overe
mate the influence of the nonadiabatic effects slightly in t
energy region.

The accuracy of these results is limited by the discrete
of internuclear separations used in the calculations.
NADP and VCC calculations, the largest values of intern
clear separation are 2.5a0 and 2.6a0 , respectively. Further-
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more, the NADP and EMAP methods are based on ma
relations and, for theSu symmetry, require a calculation o
vibrational submatrices (v,v8) of the phase matrix for vibra
tional quantum numbers larger than that of the final state
the excitation of interest. Thus, for the 0→2 cross sections
in Figs. 6, vibronic phase matrices were constructed us
blocks forv andv8 from 0 to 3. This may introduce a sligh
error, because, fore-H2 scattering, thev53 vibrational state
is appreciable atR52.5a0 . The errors due to renormaliza
tion of the vibrational wave function on the interval of inte
nuclear separations considered here, and to neglect of hi
values ofR where the fixed-nuclei resonance is even m
pronounced, are difficult to assess.

TABLE I. Partial integral cross sections~in a0
2) and their sum

~the total 0→1 cross section! for e-H2 scattering at selected ene
gies from the following theories: vibrational close coupling~VCC:
top line for each energy!, the nonadiabatic phase matrix~NADP!
method~second line!, and the energy-modified adiabatic phase m
trix ~EMAP! approximation~third line!. The NADP method is re-
quired only for theSu symmetry; the ‘‘NADP total cross sections
in the last column therefore include EMAP contributions from t
Sg andPu symmetries.

E Method Sg Su Pu total

0.60 VCC 0.0126 0.0211 0.0013 0.0349
NADP — 0.0316 — 0.0405
EMAP 0.0081 0.0149 0.0008 0.0238

0.80 VCC 0.0222 0.1331 0.0063 0.1616
NADP — 0.1522 — 0.1754
EMAP 0.0187 0.1124 0.0045 0.1356

1.20 VCC 0.0327 0.5449 0.0181 0.5957
NADP — 0.5578 — 0.6033
EMAP 0.0316 0.5152 0.0138 0.5607

1.40 VCC 0.0361 0.8241 0.0239 0.8841
NADP — 0.8451 — 0.8996
EMAP 0.0359 0.7960 0.0186 0.8505

1.60 VCC 0.0387 1.1187 0.0292 1.1866
NADP — 1.1500 — 1.2120
EMAP 0.0391 1.0860 0.0232 1.1480

2.00 VCC 0.0425 1.5974 0.0382 1.6781
NADP — 1.6000 — 1.6750
EMAP 0.0438 1.5420 0.0314 1.6170

3.00 VCC 0.0471 1.8415 0.0502 1.9388
NADP — 1.8740 — 1.9660
EMAP 0.0495 1.8520 0.0429 1.9440

4.00 VCC 0.0486 1.5967 0.0505 1.6957
NADP — 1.5980 — 1.6930
EMAP 0.0514 1.5950 0.0439 1.6900

5.00 VCC 0.0488 1.2505 0.0449 1.3442
NADP — 1.2530 — 0.1344
EMAP 0.0518 1.2550 0.0393 1.3460

7.00 VCC 0.0477 0.7464 0.0301 0.8242
NADP — 0.7532 — 0.8304
EMAP 0.0506 0.7541 0.0266 0.8313

8.00 VCC 0.0469 0.5885 0.0238 0.6592
NADP — 0.5940 — 0.6648
EMAP 0.0497 0.5946 0.0211 0.6654
ix

f
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B. Differential cross sections

Because differential cross sections~DCS’s! are more sen-
sitive to the scattering dynamics than integral cross sectio
they more clearly reveal the strengths and weaknesses o
approximations inherent in the NADP and EMAP method
Figures 7 and 8 show DCS’s at selected energies for th
→1 and 0→2 excitations. The most significant difference
in the 0→1 DCS’s of Fig. 7 appear at 0.8 eV, an energy ne
the threshold of this excitation at 0.516 eV. Figure 7~a!
shows that at 0.8 eV nonadiabatic effects are somewhat m
important for scattering anglesu>90 ° than at smaller
angles. Throughout the angular range, the NADP met
slightly overestimate the DCS’s, while the EMAP metho
underestimates them, most noticeably foru,90 °. These dif-
ferences are washed out by integration over scattering a
in the integral cross sections shown in Fig. 5. As the ene
increases and nonadiabatic effects become negligible,
methods reproduce the VCC cross sections well. Note
this statement holds even at 3.0 eV, the peak of the bro
weak resonance in this cross section.

More pronounced differences are evident at the low
energy in Fig. 8, the 0→2 DCS’s at 1.6 eV. Both approxi
mations underestimate these cross sections, with the NA
result closer to the VCC values at all angles. At a sligh
higher energy, 2.0 eV in Fig. 8~b!, the NADP approximation
proves excellent while the EMAP approximation still gives
result below the VCC cross section. By 3.0 eV, in Fig. 8~c!,
all three methods give identical DCS’s. But the level
agreement at this energy is slightly misleading. As Fig. 8~d!
shows, the EMAP and NADP cross sections move sligh
above the VCC result except near the (p-wave! maximum at
90 °, where all three agree.

With still further increases in energy~not shown!, the
EMAP and NADP 0→2 DCS’s rapidly come into agreemen
with the VCC results, as happens in Fig. 7 for 0→1 DCS’s
at and above 1.6 eV. For both excitations, this concurre
simply reflects the relative unimportance of nonadiabatic
fects for these excitations at energies above a few eV,
the increasing validity of the approximate treatment of e
ergy conservation inherent in the NADP and EMAP me
ods. This concurrence is not surprising in light of the ana
gous phenomenon in DCS’s from conventional adiaba
nuclear-vibrational calculations at energies well abo
threshold@56#.

At all energies, 0→2 DCS’s show the influence o
p-wave Su scattering in their shapes, which are essentia
symmetric about 90 °, although minor contributions fro
other partial waves are evident below 3.0 eV. By contra
the 0→1 DCS’s in Fig. 7 exhibit more substantial partia
wave mixing at all energies. Even at 3.0 eV, the energy
the maximum in the 0→1 integral cross section, the DCS
reveal that the scattering is not purelyp wave, indicating
minimal influence of the large-R fixed-nuclei resonance on
this cross section, and suggesting that it may be inappro
ate to think of it as ‘‘resonant scattering.’’

Becausef2(R), the final-state vibrational wave functio
for the 0→2 excitation, is appreciable at larger values ofR
than isf1(R), the DCS’s for the 0→2 excitation are more
influenced by thep-wave shape resonance in the fixed-nuc
Su S matrix for largeR than are those for the 0→1 excita-

-
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FIG. 7. Differential cross sections for the 0→1 vibrational excitation of H2 at ~a! 0.8, ~b! 1.6, ~c! 2.0, and~d! 3.0 eV. Results for the
NADP ~long-dashed line! and EMAP~short-dashed line! approximations are compared with benchmark VCC results~solid line!.
na
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tion. Consequently, the shape of the 0→2 DCS’s more
clearly manifest the symmetric shape of ap-wave resonance
~especially near 3.0 eV! than do the 0→1 DCS. This obser-
vation is consistent with the increased importance of no
diabatic effects in this excitation evident in Fig. 6.

Such effects become significantly more important as
final-state vibrational quantum number increases@8#. To il-
-

e

lustrate this effect, we conclude with Fig. 9, which show
integral cross sections for the 0→3 excitation in H2 . The
NADP cross sections show clear evidence of the charac
istic near-resonant structures found when nonadiabatic p
ics is important@15,14#. This structure is wholly absent from
the EMAP cross sections, further verifying their origin
nonadiabaticity.
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FIG. 8. Differential cross sections for the 0→2 vibrational excitation of H2 at ~a! 1.6, ~b! 2.0, ~c! 3.0, and~d! 3.4 eV. Results for the
NADP ~long-dashed line! and EMAP~short-dashed line! approximations are compared with benchmark VCC results~solid line!.
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V. CONCLUSIONS

The NADP method has previously proven its mettle
calculations on resonante-N2 scattering @18#, where the
fixed-nuclei eigenphase sum exhibits an unambiguous sh
resonance at all relevant internuclear separations. The
pe
ur-

pose of the present paper is to calibrate a modified versio
the method which systematically includes nonadiabatic
fects for systems in which the range of relevant values oR
encompasses quite different scattering mechanisms—
ranging from nonresonant scattering at smallR to resonant
scattering at largeR. The key equations of the present mod
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fied NADP method are the redefinition@Eq. ~3!# of the fixed-
nuclei phase matrix as dimensionless, and the removal o
free-electron phase matrix~5! prior to the precursor reso
nance analysis of the foreground phase matrix~8!.

The key step in the NADP formalism is the replaceme
of the fixed-nuclei electronic energye by the operatorê
[E2Ĥ(v) in the fixed-nuclei foreground phase matr
F1(e;R,r 0). This replacement introduces nonadiabatic
fects into a procedure that, throughout the inner regior
<r 0 , is based solely on fixed-nuclei quantities; it therefo
allows a transfer of energy between the kinetic energy of
vibrational motion and the continuum energy of the proje
tile. In e-H2 scattering, such an energy transfer is vital
high-lying vibrational excitations (v050→v>3) and to dis-
sociative attachment.

What enables construction from the resulting opera
function F1( ê;R,r 0) of the vibronic foreground phase ma
trix at r 0 is the introduction via closure of the complete s

$xs(R)% of eigenfunctions ofĤ(v)1e res(R,r 0). The effective
potential energy for these vibrational eigenfunctions, the s

FIG. 9. Partial cross section in theSu symmetry for the 0→3
excitation of H2 as calculated in the NADP~solid curve! and EMAP
~dashed curve! approximations.
y
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of the ground-state electronic energy of H2 and the fixed-
nuclei precursor resonance energy, is the potential curv
Fig. 4, the key computational device of the NADP metho
The expansion basis$xs(R)% corresponding to this potentia
therefore represents the effective response of the nuclei tall
the electrons, bound and continuum, in the system@57#.

Two limitations of the NADP method should be kept
mind. First, although the method exploits anR-matrix for-
malism to connect to formally exact VCC theory outside t
R-matrix boundaryr 0 , it invokes simplifying approxima-
tions insider 0 . Whereas the VCC method is limited by
necessarily incomplete vibrational basis~which omits the vi-
brational continuum!, the NADP method replaces function
of operators by simplified algebraic forms that neglect c
tain commutators involving the rovibrational kinetic-ener
operator. Thus it is difficult to assess the formal resid
errors in a NADP result except by the type of detailed n
merical comparisons presented here. Second, the proce
for evaluating off-diagonal matrix elements in the EMA
method, which we use for the background phase matrix
rather arbitrary, and the resulting formulas may not be
propriate for scattering near threshold, where long-range
tentials play an important role. This point requires separ
study in particular cases, as has been done for rotatio
effects in dipolar scattering@18#.

The thrust of the comparisons of NADP and VCC integ
and differential cross sections for the 0→1 and 0→2 exci-
tations in Sec. IV are, first, to validate the method by de
onstrating concurrence with fully nonadiabatic VCC resu
and, second, to probe the breakdown of these approximat
elsewhere. Introducing the fully adiabatic EMAP results
this picture reveals, especially in DCS comparisons, the
ture and importance of nonadiabatic effects for low-lyi
vibrational excitations of H2 . These effects, of course, be
come far more important for excitation to higher-lying stat
and for dissociative attachment. It is in the study of su
processes, the next stage of this research, that the NA
method as formulated and calibrated here will be most va
able.
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