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Aligned atomic Rydberg states of sodium can be prepared using two-step excitation from the ground
state by linearly polarized pulsed lasers. Information that is normally inaccessible, e.g., sublevel partial
cross sections in charge-transfer experiments, can be obtained when aligned targets are used. The calcu-
lations of orbital alignment must carefully allow for fine and hyperfine structure, laser linewidths, pulse
widths and delays, sublevel coherences, and other factors. In this paper we derive the orbital alignments
and time-averaged d-state sublevel populations for 3%S,,,—3 ZPJI —n %D excitations in Na using

angular-momentum and density-matrix methods. We consider both quadrupole alignment 4 ) and hex-
adecapole alignment 49, with excitation through either J;=1 or J intermediate states considered on
the same footing. We show sublevel populations for |M.]=0, 1, and 2 analytically and graphically. Fi-
nally, we formulate the experimental design problem quantitatively in order to ascertain how to optimize
the choice of polarizer angles for extraction of sublevel partial cross sections. Although perhaps the
commonest instance, two-step excitation of Na(nd) is but one of a large number of interesting cases, and
this study is further intended to illustrate and guide the application of these methods to other light
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atoms.

PACS number(s): 32.80.Rm, 34.60.+z, 34.50.Pi .

I. INTRODUCTION

One of the earliest and most widely used techniques for
modern Rydberg atom studies is two-step excitation of an
atomic beam or vapor by pulsed lasers [1-4]. The sodi-
um atom, with its convenient arrangement of energy lev-
els, its quasi-one-electron structure, and its ease of use in
the laboratory, has received more attention than any oth-
er element in Rydberg studies of all sorts. These studies
range from spectroscopy [5,6] to collisions [7-12] (at en-
ergies from subthermal to MeV) to cavity quantum elec-
trodynamics [13,14] to wave-packet studies [15] to quan-
tum manifestations of classical chaos [16]. The most
common two-step excitation scheme for populating
high-lying nd states [1] is

Na(3 2S1,2)h—>Na(3 2P1/2,3/2 )h—>Na(n 2D3/2,-5/2 ) 4 (1)
v vy .

where the wavelength A;=c/v;=589.6 or 589.0 nm for
the 32P, s or3 2p, ,, intermediate state, respectively, and
Ay=c/v,=417-408 nm, for n ranging from n =15 to
infinity. Of course, one can also populate # %S, ,, by this
scheme, and, via a small Stark-mixing electric field,
n2p, 12,372 @ well [3]. By more complex schemes one can
even populate individual parabolic levels or circular
states [17,18]. '

In the early 1970s the first known studies of alignment
and orientation in atomic collisions. were undertaken
- [19,20]. Alignment and orientation refer to even-order
and odd-order multipole moments, respectively, of atom-
ic angular momentum [21]. These multipole moments
may be produced by anisotropic scattering processes,
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and, conversely, the alignment and orientation of a
prepared target may affect the outcome of scattering
events. In particular, orientation refers to a net circula-
tion in the atom or (in lowest order) to a nonzero value of
(J) for the system; this arises from an imbalance in the
populations of sublevels with magnetic quantum numbers
+M; and —M;. By contrast, alignment refers to a
nonuniform population of sublevels with various values
of |M/| (regardless of sign) and is proportional to even
multipoles of the atom: in the present study, the quadru-
pole and hexadecapole moments are of interest (see Sec.
IID).

The 20 years since those initial studies of alignment
and orientation have seen a vast growth in this research
area, which now includes electron-atom [22], atom-atom
[23], ion-atom [24], and even molecular processes [25].
Fano and Macek [26] first placed the description of align-
ment and orientation in atomic physics on a firm theoret-
ical foundation. Experimental investigation of the align-
ment produced by collisions and of the effect of target
alignment on collision cross sections began with the e-He
coincidence experiments of Eminyan et al. [27] and the
e-Na superelastic experiments of Hertel and Stoll [28].
Andersen, Gallagher, and Hertel [29] have thoroughly re-
viewed orientation and alignment in electron-atom col-
lisions, and further reviews are now in preparation [30].

Recent measurements of charge-transfer (CT) cross
sections for collisions of singly charged ions with Na
Rydberg atoms [31], e.g.,

Nat+Na(nd)—Na(n'l')+Na™ , )

have revealed that the cross section o7 for capture into
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all bound states (n']’) of the projectile can be varied by as
much as 10% (particularly near certain velocities less
than that of the orbiting electron) by rotating the plane of
linear polarization of the v, laser about an axis perpen-
dicular to the momentum of the incident projectile beam
[32]. Because the deflection of the projectile in such a
Rydberg-atom collision is negligible, these processes offer
little hope for experiments that define the collision plane,
as required for the study of initial-state orientation
[33,34]. All neutralized Rydberg-state projectiles
Na(n'l') are collected and detected regardless of impact
parameter or final-state quantum numbers. Thus only
target alignment can affect the measured cross section.
Such alignments are established in the Na(nd) target by
the directions and polarizations of the two exciting lasers,
subject to constraints imposed by angular-momentum
coupling and the properties of the relevant electric dipole
operators.

One can represent dynamical information about the in-
itially aligned state either in terms of the density matrix,
which describes the populations and coherences of the nd
sublevels [35,36], or the alignment tensors, which are the
mean multipole moments of the angular momentum in
the aligned state [21]. The total charge-transfer cross sec-
tion for process (2) can be written in terms of either ele-
ments of the density matrix or components of the align-
ment tensors, :

o= poit =3 40 @
i k

where p; is the fractional population of the ith magnetic
sublevel of the nd state (e.g., one of the allowed
M;=-2,—1,...,1,2 sublevels) as represented by the
ith diagonal element of the appropriate density matrix,
and o7 is the partial cross section of the ith sublevel.
Similarly, A" is the kth-rank target alignment tensor

and 083; is the corresponding partial cross section. The

sums run over all relevant sublevels / or tensor ranks k.
Note that although sublevel coherences (off- d1agona1
density-matrix elements) and alignment components Aq
for 70 may exist, they do not appear in Eq. (3) because
the collision and detection processes in the Rydberg ex-
periment impose a cylindrical symmetry that precludes
their contributing to the charge transfer cross section.

In this paper we exhibit the theory by which one can |

use laser polarizations and a mutually perpendicular exci-
tation and collision geometry to obtain sublevel popula-
tions and alignment components experimentally. We also
show how to optimize the experimental design for mea-
surement of the sublevel cross sections or kth-rank par-
tial cross sections. The theory, which is based on density
matrices [35], is closely related to the determination of
alignment in laser-induced fluorescence [37]. Although
we have simplified its implementation by approximations
that are valid for many contemporary Rydberg-atom ex-
periments, the framework presented here should serve as
a structure upon which one could erect a more
comprehensive theory, encompassing hyperfine effects
[38], quantum beats [1,39], circular polarization, orienta-
tion, and higher-order alignments.

In Sec. II we derive exact expressions for diagonal
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density-matrix elements and alignments for the two-step
excitation in Eq. (1). We then display these results in Sec.
IIT and we use them to discuss experimental design and
optimization in Sec. IV. In Sec. V we summarize the
present explicit results and compare them to the only
comparable previous analysis of which we are aware, a
different experimental context that simplifies the present
problem to three special cases.

II. THEORY

A. Excitation scheme and experimental geometry

Figure 1 shows the two-step excitation scheme and the
hyperfine [38] and fine structure [39] of the 3P and n 7))
levels. The initial 325, /2 ground state is unpolarized, so
we shall describe this excitation quantum mechanically
using density matrices. The first excitation uses a pulsed
laser of frequency v; whose linewidth (AA;%0.1 A,
Av,R10 GHz) overlaps all components of the
3283 2PJ1 hyperfine multiplet (where J, is the total

electronic angular-momentum quantum number of the
intermediate 32P level). This linewidth does, however,
resolve the fine-structure splitting of 520 GHz between
levels with J; =1 or 2. Linearly polarized lasers do not
optically pump hyperfine levels, but because the oscillator

“strength of the 3s —3p line is very large, some degree of

saturation may occur [40]. This has the effect of shorten-
ing the time an atom spends in the 3 2P state, preventing
some hyperfine depolarization [21,26,35] that might
occur were the atom not promptly excited to the nd state.
The laser pulse widths range from 5 to 8 ns, typical of
yttrium-aluminum-garnet- (YAG) pumped dye lasers,
and the delay between the first and second laser pulses
ranges from O to 5 ns.

The second excitation, from the 3°P; level to the nd

Rydberg state, uses a similar pulsed laser whose linewidth
overlaps all hyperfine components of 3 2PJ and the fine

and hyperfine components of the nd state, thereby excit-
ing both fine-structure levels of the Rydberg state. So
while the first laser excites the atom from a particular ini-
tial level (Jo=1) to a particular intermediate level 3 p 7,

Jp=3/2
Level 2 n®Dy/p 52 fs 1,5 =12 MHz
. 52 | (n=20-40)
419\0“’1 F=3
) 2 P
hfs (3 Pala) 1o | 108MHz
2 ) t
Level 1 3 P1/2,3/2 F=2 _
589.0, 589.6 nm hfs (3%Py/) 189 MHz
2 r _

&

Level O 328,/

hfs { 1772MHz
1

FIG. 1. The sodium 3s, 3p, and nd (Rydberg) energy levels
and fine and hyperfine structure for the present two-stép laser-
excitation scheme.




the second laser, if incident on an atom in-the 32P;,,
state, effectively averages over the two allowed final-state
values J,=3,3. Of course, if the atom is in the 32P,
intermediate state, the electric dipole selection rule
AJ =0, =1 permits only excitation of n D5 ;.

Under these conditions, we can completely neglect
hyperﬁne structure. The largest AF =1 or 2 splitting of
the 32P;,, level is 93 MHz [38]. Therefore hyperfine
quantum beats [26] in 3%P,,, will occur at frequencies
v<93 MHz, i.e., with periods longer than T=11 ns. The
short pulse widths and pulse separation, together with
saturation effects, imply that the sodium atoms will reside
in the 3 2P; /, level for much less than one period T, so we
can neglect hyperfine depolarization for J; =3. The oth-
er intermediate state, with J,=1, is margmal in this
respect. The F=1 and 2 sublevels of this term are
separated by 188.6 MHz, so the beat period is T =3 ns.
Although some hyperfine depolarization may occur, it
will be reduced by saturation in the first (589.6 nm) exci-
tation. In the final nd Rydberg state, hyperfine splittings
are on the order of kHz and may be neglected complete-
ly. These conditions, therefore, justify use of a fine-
structure coupled representation, in which we identify the
initial (/ =0), intermediate ({ =1), and final ({ =2) states
discussed above by |L;S;J;M; ) in determining the density
matrix.

Figure 2 shows the geometry of a typical experiment
[32]. The Na atomic beam (not shown) approaches the
origin in the +X direction, and two laser beams with fre-
quencies v; and v, approach in the —X% and +¥§ direc-
tions, respectively. We take the axis of the projectile (ion)
beam +2 as the axis of quantization; this is also the axis

of cylindrical symmetry of the collision and detection.’

This choice facilitates describing the excitation and sub-
sequent collision in terms of alignment tensors A;k), since
only ¢ =0 components contribute to the cylindrically
averaged signal, and we can express these tensors solely
in terms of diagonal elements of the nd density matrix.

(Additionally, reflection symmetry in the plane normal to

ION SOURCE DETECTOR

*(:O—— (=2
= 410nm [
y

o>

FIG. 2. The mutually perpendicular laser excitation, polar-
ization, and collision geometry for experiments analyzed in Sec.
II.
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this axis implies that only even-k tensors are nonzero and
that the excitation cannot induce an imbalance in the or-
bital magnetic sublevels, i.e., a nonzero orientation.) The
key quantities in deriving the density matrix are B; and
B,, the angles of the vectors €, and €, of (electric field)
linear polarization of the laser beams. With the present
geometry, the polarization vector for the first laser is in
the xz plane and that of the second is in the yz plane. For
either laser B;=0 corresponds to polarization parallel to
Z.

B. The density matrix
in the total angular-momentum basis

To obtain an expression for the density operator for
the nd state we begin with the unnormalized density
operator for the (unpolarized) ground state

=2|—;—M0>(%M0‘=ﬁ0, v 4)
My

where we label atomic kets by the quantum numbers of
the total electronic angular momentum and its projection
on the quantization axis. Thus |1M,) represents the
sublevel of the 3%, ground state with (J, ) =M, and
the sum runs over My=—1,+4. We also note that this
dens1ty operator is just equa] to the projection operator
PO onto the electronic ground state.

The density operator for the 3p state that results from
the first step of excitation is ‘

pr=1p"1", (5)

where T, is the electric dipole transition operator [41] for
the transition to 3 2P 7, Via vy light polarized along €,

2‘-’ M1)<J Mll 1A ﬁl(?l'?)' (6)
Ml

Because the first excitation could excite various sublevels
of the 3%P j, state, this operator requires a sum over sub-

levels, —J, <M <J,. The operator T corresponds to the
spatial coordinate of the valence electron in Na, and P is
the projection operator onto the 3 p 7, state.

We describe the second excitation similarly, via the
transition operator

T,= > 3 M) {T,M, (&,

ST, M,

=P,(&1), )]

where in order to allow for excitation of both nd ﬁne—

structure levels we sum over J, as well as M. So P2 is
the projection operator onto the nd Rydberg state. The
density operator of this state is, finally, “

ﬁnd= 2»6\317?; =T2T1f763f11r7\1; . 8

Note that the transition operators do not preserve nor-
malization; so, for example, to normalize ﬁ"d we must
divide by its trace.

In the |J,M,) representation, the matrix elements of
ﬁ”,d, the elements of the density matrix, are simply

d. — S rtasrt
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where for convenience we have introduced the effective
transition operator

R=(&2)P (8 2)Py(&F )P (e %) . (10)

To avoid confusion we have identified the second projec-
tion operator onto the 3 2P 7, level in (10) with a prime,

Pi=3 |5,M) (T M,) . (11)
M}

We are interested in the orbital angular-momentum
properties of the nd state as it participates in the collision
and so will ultimately require a (reduced) density matrix
in an uncoupled angular-momentum representation. We
first simplify the full density matrix using tensor methods
[42].

A similar simplification arises in the study of laser-
induced fluorescence (LIF), a technique for examining the
properties of a collisiopally aligned state by excitation to
a higher state, followed by analysis of polarized emission
to a lower state. In their theoretical treatment of LIF,
Greene and Zare [37] encountered an operator similar to

and wrote it in terms of contracted polarization ten-
sors. Following this approach we first contract the spher-
ical tensor operators (STO’s) corresponding to the polar-
ization vectors for the two steps of excitation, & and &, to
form the 2* multipole moments of the radiation of the
first or second laser pulse,

E[;k)(fé\.i,»e\;:)s[él)®fe\f_l)* ];k) , (12)

where & is the STO for either the first (i =1) or second
(i =2) step and the superscript (1) indicates that these are
first-rank STO’s. . B,

To introduce these contracted polarization tensors into

J

the density matrix (9) we must rearrange the constituents
of the effective transition operator R so as to group to-
gether pairs corresponding to the same excitation step.
The tensorial properties of under rotations are
unaffected by the projection operators, which are rota-
tional scalars, although of course we must keep track of
them throughout the analysis. Thus the symmetries of R
are the same as those of the simpler operator

R CE N CENCENCENN (13)

where following Zare [21] we have temporarily labeled
the STO’s corresponding to the radial coordinate r by in-
dices (i =1, ...,4) that denote the factor in which each
appears. By writing the dot products in (13) as tensor
contractions we can rewrite Q in terms of a further con-
traction of the two contracted tensors defined in Eq. (12),

&Pk k=2 e 8 81, (18)

and a similar multiple contraction of the spatial coordi-
nates in (13). The latter operator is a contraction of the
form

ﬁ(k)(l-,j)=[/’>‘_(l)®?;l)](k) . (15)

In particular, by recoupling [37] the STO’s in O so as to
form the groupings in Egs. (12) and (15) we can rewrite O
as

0= 3 (—1F798%¥ (K ,k,)
ki,ky kg

x[R*(2,3)0 R (1,4)1®) (16)

and the nd density matrix in the [J,M, ) basis (9) as

A k
Py, = 3 (D180 ke, I, M IRV (2,300 R 2(1,4)1%) B, B Bl 30y ) (17)

ki ky kg

The intertwining of the projection operators with the
coordinate STO’s in (17) is obscured by the tensor nota-
tion, but the actual form of the operator is treated by
Greene and Zare [37]. The dependence of these matrix
elements on the polarizer angles 3, and 3, arises from the

A Ak

presence of the single-photon tensors B (€;,€7) in
é’flk)(kl,kz) and appears as Legendre polynomials when
these tensors are referred to the quantization axis of the
collision frame. ' o

(I];l\)'aluation of the contracted polarization tensors
E(i=1,2) of Eq. (12) is particularly simple in a refer-
ence frame whose quantization axis is along €;. Insucha
frame the spherical components of the (real) linear polar-
ization vector are é‘f)ll) =1 and @‘;; ;=0. Hence each con-
tracted tensor is just

11 k
000

B =/ T+ 1 Bgo (i=1,2). (18

Thus £V vanishes identically, which also must be true in

the collision frame. Therefore k, and k, assume values 0
and 2 only, and the rank of the multiply contracted ten-
sors in (14) is restricted to k =0, 2, and 4. By rotating
qul)(?,,’éf) and E;fz)(é‘z,?; ) into the collision frame we
obtain an expression for the multiply contracted tensor

Eq. (14) for ¢ =0 in terms of spherical harmonics of the
polarizer angle:

8Pk ky)=4r 3 (— 1) TR 2k 4+ 1)122

91,49,
ki ky EJ[1 1 Ky
91 92 0){0 0 0
11 k,
X100 0
X Y,fll (BI,O)Y;CIZZ(BZ,'IT/Z) . (19)
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These quantities depend in general on 3, and B,, because
the quantization axes of the two constituent STO’s in (14)
are not coincident. This general expression reduces to
the simplified analytlcal results of Table T [37].

The density matrix p™ contains information about the
mixture of the orbital magnetic (M,) sublevels of the nd
Rydberg state at ¢ =0, after the second step of excitation.
As time passes this matrix evolves according to the tlme-
evolution operator as

P?fMZ,J;M;(”: exp{i[E(J,)—E(J3)]t /#}

XPw, a0, (0) (20)
where E (J,) is the energy of the J, fine-structure level of
the nd state. The matrix elements of p™ that are off diag-
onal in J, therefore represent time-dependent sublevel
coherences that oscillate at a frequency corresponding to
the nd fine-structure separation.

But in the charge-transfer experiment (2) the Na(nd)
ensemble that is populated by two-step pulsed-laser exci-
tation is used as a collision target for 3 or 4 us, after
1

- ments p, J
2
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which time the excited atoms drift with the atomic beam
in the % direction beyond the region of overlap with the
2-directed ion beam. Charge-transfer products are subse-
quently collected downstream over a corresponding inter-
val without time resolution. Therefore 1t is appropriate to
use the time-averaged density matrix p" ? to0 represent the
target ensemble in such experiments. Because the
averaging interval extends over several cycles of the nd
fine-structure frequency [at least for values of n up to
about n =50, at which point the Na(nd) fine-structure
splitting AE /h becomes less than 1 MHz], the off-
diagonal elements of this matrix between J,=3 and 3
average to zero, making p”d block diagonal with respect
to J,. So henceforth we shall be concerned only with ele-

AA of this time-averaged matrix.
2Y2

To simplify th1s matrix, we use the Wigner-Eckart
theorem [21] to write the matrix element of the contract-
ed coordinate tensors (15) in terms of the absorption line
strengths for the two steps of the excitation,
<328, [P V}37P; )P and {37y PVl 2Dy )2
This yields for the J , block of the time-averaged density
matrix

P == 33 (0 Tk 02k, + 1002k + D] Ry )
2772272 klykqu .
J, k L[ 0 k)Tt
“lemy =g af|t v L[ D
k, ky, k
X432, [P V32P, Y2(32P, 3| 2D, )12 , @D |

where we have used the results of Greene and Zare to
simplify the matrix elements in (17} [37].

C. The reduced density matrix
in the orbital angular-momentum basis

In the experimental context described in Sec. I, elec-
tron spin plays no direct role; in the charge-transfer ex-
periments (2), for example, we seek the spatial charac-
teristics of the target nd state and the corresponding sub-

level partial cross sections af‘:}; in Eq. (3). Therefore,

]

since we are interested in the orbital populations and
ahgnment properties of the nd Rydberg state and do not
measure its spin properties, we must uncouple L andSin
[o'"d and then construct the appropriate reduced density
matrix [35] by forming a trace with respect to the unmea-
sured spin observables.

In the reduced matrix elements in Eq. (21) 2 acts
only on the variables in the space in which L acts, not the
spin space. So we can simplify the tensor contractions in
these matrix elements, uncoupling the angular momenta
to obtain

TABLE I. Contraction of the polarization vectors for a two-step laser excitation of an nd Rydberg

state of Na, Eq. (19).

85(0,0) 1
87(2,0) 5 ‘/
83(0,2) 5
&%02,2) ﬁ
&72,2) 3‘/11 =
8¥2,2)

——=(1—3cos?8,)

—1=-( 1—3cos?B,)

[1—3( cos’B;+ cos?B,— 3 cos?B; cos’B, +sin?BysinF;) ]
[1—3( cos?B; + cos?B,— 3 cos’B, cos’B,—sin’Bsin’B,)]

_\/ﬁ[z_ 6( cos’B; + cos?B,— 3 cosB, cos’B,) —sin’B;sin?B, ]

»
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(3281, P V3%P; )

0 L 1L
=(-1"" 2020, +1)]“2{ , i}
1
X (3P V)3p ) , (22a)
<32PJ Pl 2DJ )
=(—1)" (21, + 1020, + D]
17, L
X7, 2 1 Gp|PV|nd ) . (22b)

To transform the time-averaged density matrix from
the coupled to the uncoupled angular-momentum basis,
we apply the Clebsch-Gordan series. We then form the
reduced density matrix taking the trace of the uncoupled
time-averaged density matrix as

ML_ EPMLMS,M M’ 23)

where all projection quantum numbers refer to the nd
state with L =2 and S =1. But to analyze the Rydberg
state in the collision frarne we require only the diagonal
elements of the reduced density matrix—those for
M; =M;. The relationship of these elements to the aver-
age density matrix (21) is therefore

2 L J, |?
g =3 S(J,+1) : :
Py, .M, — 2 —_
L*"L MS:MZ Jz ML 7 MS MZ
‘ XPF sty 1,01, - (24)

Flhydeykesd ) =(—1)1 7

Jz+1/2(2J2+1)2 { ) 1

2

5/2
20

3
2

For convenience, we present values of these factors for
Ji=4 and $ in Table II and analytical forms for the re-
sulting density matrix elements in Table III.

The diagonal elements in Table III are proportional to
the populations in the orbital magnetic sublevels of the
nd state. These sublevels, labeled by M, are defined with
respect to the Z quantization axis of the collision frame.
As expected, Eq. (26) shows the populations for A
and —M; to be equal. To obtain the corresponding nor-
malized densny matrix we divide p" by its trace,

Tr(p™ z EO k1, k) f (heyske, 037 ,)
Ky ok,

X | (3s[V)|3p ) |?
X |(3p|[pV|nd )2, (28)

Iy
(27, + 12 (2K, +1)(2k, +1)(2k +1)]'> [ ,

I, k J,

KEITH B. MacADAM AND MICHAEL A. MORRISON 48

Note that M, =M, +Mj, a consequence of the 3j symbol
in this result. Furthermore, since we require only
M} =M, we may set ¢ =0 in (17) and drop the summa-
tion over g.

Evaluation of the result of substituting p7 Jz My JyM, from

Eq. (21) into Eq. (24) is facilitated by the 1dent1ty [43]

1
Y R
Mo, M, Mg —M,| |—M, 0 M,
_ K+ 2 k 2 2 k 2
_( - 1) ___ML 0 ML JZ _;_ JZ . (25)

Our final result for the diagonal elements of the reduced
time-averaged density matrix for the nd Rydberg state re-
sulting from two-step excitation is

M
P 2, =(— 1] 3s[P V3 ) P

X |{3p|#V||nd ) |?

~M; 0 M,

2 k2 |4
]63"’(k1,k2>

where we have gathered the kinematic factors resulting
from angular-momentum coupling in the numerical fac-
tor

Ji kl]

-
J2 Jl 12J1 1 JZ
1 2 1L J, 1 J, 27
T ki k, k

—

which (up to an overall constant) represents the total pop-
ulation of the Na(nd) state produced by the two-step ex-
citation. Analytical expressions for the trace also appear
in Table III.

D. Alignment tensors

The alignment tensors 4 ék) describe the distribution of
Rydberg atoms among the available magnetic sublevels in
this state, |M; |=0, 1, and 2. As noted above, the axial
symmetry of the time-averaged nd population in the col-
lision frame implies that only the ¢ =0 components of
these tensors contribute to the experimental cross section.
Similarly, reflection symmetry in the plane normal to the
quantization axis implies that only alignment tensors of
even rank k are nonzero. Finally, the 3j symbol in the
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TABLE II. Angle-independent kinematic functions Eq. (27)

for the reduced time-averaged density matrix of Eq. (26).

-

k
(kq1,ky) 0 2 4
4 . =t
2V5
0,0 22
(0,0 g 0_ 0
V35
0,2) 25 0
(2,0) 0 0 0
(2,2) o 0 0
J=13
45
0,0 ==

00 - 0 0

32v35

0,2 0 22229
0.2 1125 0

3235
(2,0) 0 D 15/- 0
1 22v5 6

2 —_ _— = —

2.2) 45 1125 25

tensor contraction (19) for & (qk)(kl,kz) prescribes the tri-

angle rule A(kk,k), which restricts the rank of this po- -

larization tensor—and hence of the alignment tensor—
to k=0, 2, and 4. The alignments reflected in the
nonzero tensors 4§ represent inequalities in the popula-
tions py, | and p,,. | for | M, || Mp ).

TABLE III. Explicit expressions for the trace and diagonal
elements of the unnormalized reduced time-averaged density
matrix evaluated from Eqs. (28) and §26), respectively.

i Tr(p™)
1/2 -
372 1a5[ 79+ 3( cos2B, + c0s2B,+ cos2B, cos2B,)]
nd . Jl =%
Pay v, =a§}£2’ +b§}£2’ cos2f3,
Coeflicient M,=0 |M.|=1 |M|=2
all/2) 1 1 L
My 162 180 270
pi/2) 1 1 —_1
My 270 540 270
Jl =%

_nd
pML,ML=aﬁ}£2’ +b§}£2’ cos231+c1§}L/2’ cos2B,

+d§}£ 2) cos23; cos2f3,

Coefficient M,=0 |M;|=1 |M,|=2
a3/ 133 B 181
M; 10125 50 27000
(372) 53 2 _ 43
b 53 2 A3
My 6750 1125 9000
o372 19 . _109
My 1125 13500 27000
(3/2) 29 1 19
d 1 19
My 6750 300 9000
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In the collision frame, we can calculate the multipole
moments and alignment tensors from the diagonal ele-
ments of the normalized reduced time-averaged density
matrix, which we now acknowledge as (relative) popula-
tions by defining .

Pa (=5, (29)

where the argument Q=(f3;,8,) denotes the functional
dependence of these populations on polarizer angles. For
example, the quadrupole alignment tensor for L, which is
the quantum-mechanical analog of the classical quadru-
pole moment for a distribution of orbital angular-
momentum vectors, is simply [21]

V6
2) — @)
o =V I R
—_‘i_ LM
X L (L||L?\L)
a0 g, |CEIEPIE)
' (30)

The monopole tensor A, which is proportional to

the total number of atoms in the Rydberg state, is just
equal to 1. The quadrupole (k =2) and hexadecapole
(k =4) tensors are |

2 3M}—6 |
AP=3 |— ¢ |Pm, =227 P1—Po, (1)
M
72—155M7 +35M}
AP=3 Py,
i 288 L
=4(py—4p113po) , (31v)

where for clarity we have suppressed the dependence of
the populations on Q=(f3,,/8,) in these results. Analyti-
cal expressions for these quantities, based on the density
matrix elements in Table III, are provided in Table IV.

Note that the quadrupole alignment tensor 4 82) for ex-
citation through 3 2P, ,, is independent of the angle §; of
the polarization of the first laser, and the hexadecapole
alignment tensor A4 for this case is zero. This result
obtains because the corresponding alignment tensor
A;k)(J ) for the fotal angular momentum J is zero unless
k <2J. Excitation via the second laser from 3?P, ,, can
only result in n 2D, , states, so for this case AP (T)=0
and hence the fourth-rank orbital alignment tensor (31b)
is also zero. We shall examine these tensors further in
the next section.

III. RESULTS

A. Total Rydberg-state populations

The trace of the (unnormalized) density matrix, Eq.
(28), gives the total population in the nd state created by
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TABLE IV. Simplified analytical expressions for the quadrupole (k =2) and hexadecapole (k =4)
alignment tensors for two-step laser excitation of an nd state of Na through an intermediate 3 2P " state

with J; =1 or 3.

e g e v

Alignment

tensor e Brpression
Ji=1
AP —#[1+3cos2B,]
AP 0 .
Jl =3/2

40 1 | —439~777 cos2B;~ 672 cos2B,+132 cos2B, cos2f3,
0 25 h(B1,Bs)

4@ 9 | 1+7cos2B,+7 cos2B,+17 cos2f cos2B,
° 40 h(By,B2)

where $ (81, =79:+3( cos26 - cos2fy F cos2 cos2fy)

the two-step excitation. For J; =1, this quantity is a
number () independent of the polarizer angles 8; and
B,. But as Table III and Fig. 3 show, for J, =3 the trace
depends on both angles. The importance of this finding
for measurements such as the charge-transfer experiment
(3) is that some polarizer-angle combinations are more
efficient than others for exciting the nd state regardless of
whatever alignments the two-step excitation may pro-
duce, a point to which we shall return in Sec. IV. The
trace in Fig. 3 also exhibits fourfold symmetry about the
point (B,5,)={w/2,7/2).

The main utility of the trace of ﬁ"d, however, is in nor-
malizing the density matrix to obtain the fractional popu-
lations of the magnetic sublevels of the nd state. In order
to obtain the relative cross sections o“T in the charge-
transfer experiments described in Sec. I one must “nor-
malize” the collision signal by dividing by (among other
things) a signal proportional to the number of target
atoms in nd states. (This normalization signal is derived
[31], in turn, from field ionization of the target atoms that
remain after a few microseconds of exposure to the pro-
jectile beam.) In general both the numerator and denomi-
nator of Eq. (29) depend on the polarizer angles, so the
dependence of Py, On these angles, although smooth, is

more complicated than the simple sinusoidal dependence
of the absolute sublevel populations given by the diagonal
elements of the unnormalized density matrix, Eq. (26).
Figure 4 shows the fractional populations for each sub-
level of the nd state as functions of 5; and f3, for B;=0 to
«. For J, =1 these quantities, shown in Fig. 4(a), depend
only on the second polarizer angle and exhibit symmetry
about 8,=0 and 7/2. For J; =32 the populations depend
on both polarizer angles, and Fig. 4(b) shows the symme-
try about ;=0 and 7 /2 that is inherent in the depen-

Another obvious feature of the populations for J; =1
in Fig. 4(a) is the point of intersection of the three popu-
lations, the “magic angle” [44] at which

In fact, because of the aforementioned symmetry about
/2 there are two such angles, Bl=cos"11/ 1/3=54.7°
and its complement.

The existence of magic angle(s) can be useful in the
design of an experiment on the prepared Rydberg-state
atoms because the resulting sublevel mixture is isotropic
(unpolarized) only for such a magic-angle condition. For
this special mixed state the density matrix is a multiple of
the unit matrix, and the quadrupole and hexadecapole
alignment tensors 4 and 44" vanish identically. Be-
cause the results of measurements at these special angles
do not depend on orientations or alignments in the nd
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dences of these populations on cos(28;) (see Table III). .

This figure appears to exhibit the same fourfold symme-
try as the trace in Fig. 3, but in the full density matrix
this symmetry is now only approximate. We shall consid-
er this approximate symmetry in relation to experimental
design in Sec. IV. '

FIG. 3. The trace of the time-averaged density matrix for ex-
citation of an nd Rydberg state of Na through the 3 *P; , inter-
mediate state. The trace signifies the dependence on polarizer
angles of the overall production of Rydberg atoms. For excita-
tion through 32P, ,, the trace is angle independent.
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states, these angles favor accurate replication of the ex-
periment and facilitate quantitative comparisons between
experimental and theoretical studies.

Although it is not readily apparent in the graphs of
Fig. 4(b), investigation of the analytical forms for the

=] =} o
[ © ~

Normalized Density Matrix Element:
=)

o

0 ' /2 m
B,

density matrix for J; =2 in Table III reveals that for ex-
citation through 32P,,, there are no exact magic-angle
pairs, i.e., no angles (8,,3,) for which the resulting sub-
level populations are equal. Figure 4(c) shows the varia-
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Normalized Density Matrix Elements

FIG. 4. Normalized diagonal elements of the time-averaged reduced density-matrix elements for excitation for an nd Rydberg
state of sodium. These elements represent the fractional population of orbital magnetic sublevels of the Rydberg state. (a) For excita-
tion through the 3 2P, /, intermediate state, the matrix elements are independent of B3, for each of the three sublevels: |M|=0 (solid
curve), 1 (medium-dashed curve), and 2 (short-dashed curve). (b) For excitation through 32P;,, however, they depend on both polar-
izer angles for | M |=0 (upper surface at corners of the figure), 1 (middle surface), and 2 (lower surface). These matrix elements man-
ifest a slight departure from fourfold symmetry that can best be seen by comparing edges of the surfaces at (8,,8,)=(0,7/2) and
(/2,0). (c) Sectional views of the “quadrufoilar matriclopod” of (b) with first polarizer angle fixed at 8;,=0, 7/4, and #/2 and

curves labeled as in (a).
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tion of the fractional sublevel populations with B, for
selected values of ;. Near B,=p,=197/64 the three
sublevel populations become nearly equal: for
$1;=0.933599 and pB,=0.924416 rad, we find
Pt =0.1929, 5} =0.2076, and p3%5=0.1959. (These an-
gle pairs result from minimizing an algebraic expression
which is quadratic in the pairwise differences between
sublevel populations. Identical results are obtained at an-
gles complementary to these.) At these “almost magic”

angle pairs the sublevel populations are almost equal and
tht(a )ahgnment tensors are small: A4 =—0.0088 and
A
ulations at these angles is unlikely to reduce the useful-
ness of this configuration for experimental and theoretical
comparison.

B. Absolute sublevel populations

To conclude our examination of sublevel populations,
we show in Fig. 5 the scaled populations given by the di-
agonal elements of the unnormalized density matrix
ﬁ"AfL, u, in (26). As noted above, these elements represent
the actual, not fractional, populations from the two-step
excitation of the nd Rydberg levels [45]. They therefore
provide key information regarding excitation efficiency.
For this reason we show for each M; the populations for
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—0.0046. So the shght 1mbaIance in sublevel pop-

My

.and for J =
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both J; =1 (which are independent of B;) and for J, =%
(at representative values of ;). We have scaled the un-
normalized elements in Table III to make the numerical
values of these populatlons of order unity; specifically, we
have divided them by py’ (B, =0,8,=0;J; =1 3). We see,
for example, that excitation of any of the M sublevels is
more efficient if carried out through the 3%P, ,, level ex-
cept at selected values of 3, for M; =0 and 2.

C. Alignments

" Using the fractional populations in Fig. 4 and the ex-
pressions in Table IV we have calculated the quadrupole
and hexadecapole alignment tensors for J; =1 [Fig. 6(a)]
2 [Figs. 6(b) and 6(c)]. (As discussed in Sec.
I, for excitation of n *D; , through the 3 %P, ,, state the
hexadecapole tensor is zero.) These tensors must satisfy
certain limits that follow from their definitions [21,37].
For L =2 these limiting conditions are

—124% <1, (33)

—l<yg4{P=<i,
Figure 6 shows that the calculated alignment tensors do
indeed satisfy these inequalities. These figures also afford
insight into the nature of the alignment produced by exci-
tation at various polarizer angles. Thus A is negative
at angles where the ensemble of Rydberg states consists
predominantly of atoms in the M; =0 state and the orbi-

,,,, tal angular momentum is approximately normal to the z

axis. By contrast, 4§ attains positive values near angles
where the two-step excitation yields predominantly
=+2 states. Similarly, 43" attains its maximum

" (minimum) value when the predominantly |M,|=0(1)
sublevels of the Rydberg atoms are occupied, respective-

Scaled Density Matrix Element

_ scrlbed in Sec I to determine partial cross sections 0§} M,

from measurements of the total charge-transfer cross sec-

_tion O‘CT The latter quantity depends, of course, on the

0 /2 T

2.0 -
(c) T M) =2 s

15 . S cw s
tol LT
05" 7 N

. - - - ~ - \ ~od
0 L= =

0 /2 T

B2

FIG. 5. Diagonal elements of the reduced time-averaged den-
sity matrix scaled so as to place excitation through the 32P;,,
and 32P,, states on the same scale. (a) For excitation through
32P, ,, (solid curve), the elements for M, =0 are independent of
B:. For excitation through 32P;,,, we show results for ;=
(long-dashed curve), 7/4 (medium-dashed curve), and 7/2
(short-dashed curve). (b) Same as (a) for |M;|=1 sublevels. (c)
Same as (a) for | M, |=2 sublevels.

polarlzer angles By and B,. In practice one would mea-
‘siit€ this cross section for a range of angle pairs (thereby
varylng the relative sublevel populations of the nd Ryd-
:-berg state) and extract partial cross sections from the re-
sultmg data via a least-squares analysis. These cross sec-
“tions woulgi gonstltute parameters in a set of linear equa-
tions equal in number to N,, the number of data points
[angle pairs (B;,8,)] at which one measured o, If we
denote a particular angle pair by an index 7 on the collec-
tive symbol Q; introduced in Eq. (29), then these equa-
tions have the form

UCT(Q:')=P0(Q';' )U(C):T+2P1(Q'i)0'(1:T+2p2(‘Q‘i)GgT )
i=1,...,N, (34)

where the relative populations 278 (©;) are, according to
Eq (29), just the diagonal elements of the normalized



time-averaged reduced nd density matrix evaluated at ;.
The factors of 2 account for equal populations in +M;
sublevels. Since Eq. (34) contains three unknowns, we
must perform at least three distinct measurements to
separate the three sublevel cross sections: i.e., the num-
ber of data points N, must satisfy N, > 3.
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FIG. 6. The quadrupole orbital alignment 4§’ (a) for excita-
tion through the 3%P;,, state, which is independent of B;, and
(b) for excitation through 32P; ,, which depends on both polar-
izer angles. (c) The hexadecapole orbital alignment A" for ex-
citation through 32P;,,, exhibiting its fourfold symmetry. For
excitation through 3P, ,,, this alignment is identically zero.
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Beyond this, though, it is not obvious what constitutes
an optimum experimental design. The complicated rela-
tionship of the populations pML(.Q.,-) to the polarizer an-

gles (see Table IXI) makes it difficult to determine what
design (i.e., what choice of points Q;) will produce the
greatest distinction between the three partial cross sec-
tions. Two issues arise: first, at how many data points (;
should one measure ¢*T (that is, what is the optimum
value of N,) and which N, angle pairs will maximize the
accuracy of the partial cross sections? Second, how
should one apportion the total measurement time T
among the various ;?

According to Poisson statistics the uncertainty of each
measurement is proportional to the square root of the
recorded charge-transfer signal f;, and the relative uncer-
tainty decreases with the time ¢; spent in repeated inea-
surements at the ith angle pair Q; as t,”'/2. But under
stable measuring conditions the recorded signal f; typi-
cally varies only slightly over the range of polarizer an-
gles, so we can assume that the statistical weight o 2 at-
tached to the ith measurement is proportional to ¢; ir-
respective of angles. The fractional time allotted to the
ith angle pair is

t; t; (35)
Ti = e—= ———N—— s
T 2,- i
and these 7; may be taken as the weights of the individual
measurements. A critical aspect of experimental design,
then, is to decide how most efficiently to apportion the
fixed time T among different choices for (3,,53,) by selec-
tion of corresponding 7;.
The theory of design of least-squares experiments pro-
vides a mechanism to answer these questions [46]. First

we construct from the populations pML(.Q,-) the “design

matrix” 4. This is a rectangular matrix whose three
columns correspond to the three partial cross sections in
Eq. (34). Each of the N, rows of A4 corresponds to a data
point, i.e., a polarizer angle pair (5;,8,). Second, we con-
struct the normalized weight matrix P, a diagonal
N, XN, matrix of weights 7;. The ith (diagonal) element
of the weight matrix is just the inverse of the (normal-
ized) variance for the measurements at Q;, ie,
P,;=1/0%. ‘

"We then determine the optimum number and choice of
data points Q; and apportionment of times T by maxim-
izing the “design determinant”

D=detd'P 4 . 36)
Doing so minimizes the volume of the hyperellipsoid of
standard deviation in a least-squares fit of the N, equa-
tions Eq. (34). Equation (36) can be put into a form that
provides some insight into this method of optimizing ex-
perimental design. For a “minimal” experiment—i.e.,
one performed at just enough data points to allow solu-
tion of Eq. (34), in our case at N, =3 angle pairs—Eq.
(36) reduces to.
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N’5 3.0 e
= 2
D - { I;[l Tj (detl_4.) - e s (37) Square Grid
. ’ ] i . Lower Triangle
If the experiment is overdetermined so the number of Uoper Triangl
data point exceeds the number of parameters, Eq. (36) as L A TP rangie
can be expanded as g /2 oo
D=3 rrmldet([4]4)}2, (38) E ¢ o 4
Ljk - g Be
(i>j>k) E wr o
where [4 ], is the 3X3 matrix formed from the rows § 20T 0 0 > “ﬁ e
i,j,k of the design matrix 4 and the sum is carried out o N v
over all distinct choices i <j <k from among the N, %ﬂ ‘2
rows of A. We can therefore maximize the determinant S} .
D by concentrating the measurement time on those . N?
choices of polarizer angles which maximize as many of 15 E§§§? 7
the matrices [ 4 ] as possible. This means, roughly, that :&V ?‘\"
o . ; SNZIENZ N
we should select Q; to exhibit maximally contrasting con- ;g&z & ;:;§¢
tributions from the various populations py, . E.‘}sz 8 ggz
' N7 %
We have used this machinery to test a range of typical 1.0 , ‘ to"/ X K:;_

experimental designs. We first sought to decide whether
it is preferable to perform a minimal experiment [e.g.,
spend equal time at three angle pairs, such as (0,0),
(0,7/2), and (7w /2,7/2)] or to measure cross sections at
angles chosen via a grid of values of (8,,53,) spaced by in-
crements smaller than 7/2. We defined grids of points
(im/2n,jm/2n) in the (By,5,) plane, where n =1, 2, 3, 6,
9, and 18, and i,j =0, ..., n. The structure of the densi-
ty matrices shown in Fig. 4 suggests that the design
determinants will be quite similar for sets of correspond-
ing data points chosen from the upper or lower triangles
defined by B, = 3, and B, =B, respectively, shown in the
inset in Fig. 7. For example, for n =1 (an angle incre-
ment of 77/2) the design determinant for equally weight-
ed data points drawn only from the upper triangle [(0,0),
(0,7/2), and (/2,7 /2)] is 24.07, larger but not dissimi-
lar from the value 21.65 obtained for corresponding
points in the lower triangle [(0,0), . (7/2,0), and
(m/2,7/2}]; including all four data points corresponding
to this increment, we obtain 19.40. By thus specifying
angle increments 7/2, w/4, w/6, m/12, w/18, or 7/36,
we define six grouped (square grid, upper-triangle, lower-
triangle) gedanken experiments with, respectively, 3, 6,
10, 28, 55, and 190 points for the triangles (4, 9, 16, 49,
100, and 361 for the square grid) among which the total
measuring time T is to be apportioned equally. The ordi-
nate in Fig. 7 shows the cube root of the design deter-
minant because in the present study this quantity is in-
versely related to the uncertainty for the three partial
"cross sections to be inferred via Eq. (34). Thus the quan-
tity graphed in this figure is directly interpretable in
terms of error bars.

In Fig. 7 we compare the design determinants for these
prototypical experiments. We find that the optimal ex-
perimental design is to apportion T equally among the
three data points in the upper triangle separated by 7/2,
i.e., at polarizer-angle pairs (0,0), (0,7/2), and
(w/2,m/2). No experiment carried out at smaller angle
increments comes close to being as efficient at determin-
ing the sublevel cross sections. Extensive studies of vari-
ous uneven allocations of the total time T among data

n/2 n/4 n/6 w/12

Polarizer Angle Increment

FIG. 7. The design determinants (cube root) for experiments
using various polarizer-angle increments described in the text.
“Lower triangle” refers to B,<f; and “upper triangle” to
Bi<B,. “Square grid” designs cover the full range
B1,B>,E€[0,7/2]. The bars denote the relative capability of each

design to separate the three sublevel partial cross sections crf,’i

by a least-squares fit of polarizer data as in Eq. (34). For each
design the fixed total measurement time T is apportioned equal-
ly among the selected polarizer settings. The inset illustrates by
solid dots the set of polarizer angles for an “upper triangle” ex-
perimental design with angle increment /6.

points for this and other prototype experiments failed to
increase the design determinant, demonstrating that the
symmetry suggested by Eq. (38) is, in fact, optimum:
TI=TZ= * e =TNPO

It may nonetheless be desirable in practice to perform
experiments using a smaller angle increment. A design
that involves measurements only at polarizer angles 0 and
/2 gives no information about whether the signal varia-
tions in fact have the functional forms expected from the
density matrix. In particular, such a choice would not re-
veal whether the signals are even functions of 3, and B,.
An experimental asymmetry could result from misalign- -
ment of the polarizers, which would result in the in-
correct inference of partial cross sections if it were not
detected by a series of measurements at smaller angle in-
crements. Figure 7 shows that choosing an increment
smaller than 7 /2 does not greatly compromise the power
of the experiment to distinguish between the partial cross
sections and so would not limit the resulting insight into
alignment effects for charge transfer.

V. DISCUSSION AND CONCLUSIONS

The formalism in Sec. II and results in Sec. III illus-
trate the use of density matrices and angular-momentum
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analysis to relate the polarizations of laser beams to the
distribution of atoms excited by those lasers among orbi-
tal sublevels of the final Rydberg state. Rather than at-
tempt an encyclopedic study of all relevant experiments
of this sort, we have worked through a single explicit,
concrete example—two-step excitation of nd states of Na
under common experimental conditions as described in
Sec. ITA—that is itself of significant interest. The
analysis in Sec. IV gives one of several possible applica-
tions of this information: to optimizing design choices in
setting up a charge-transfer experiment to determine par-
tial cross sections as described in Sec. I.

In regard to this example, we have provided informa-
tion concerning time-averaged sublevel populations of a
Na(nd) Rydberg state in several forms.

(i) The density-matrix elements in a coupled angular
momentum {|J,M, )} basis, which refers to sublevels of
the nd fine-structure levels, appear in Eq. (21).

(ii) The diagonal elements of the reduced density ma-
trix in an (uncoupled) orbital angular momentum
{ILM, )} basis are given in general form in Eq. (26), in
simplified analytic form in Table III, and in (scaled)
graphical form in Fig. 5. Up to a scaling factor that de-
pends on experimental parameters ideally held constant,
these diagonal elements are the populations of M, sub-
levels.

(iii) The trace of the nd density matrix is given in gen-
eral in Eq. (28), analytically in Table III, and graphically
_in Fig. 3. This quantity gives the variation of the fotal
population of the nd Rydberg state with polarizer angles.

(iv) The diagonal elements of the normalized reduced
density matrix are defined in Eq. (29) and illustrated in
Fig. 4. These quantities represent the fractional popula-
tion in any M; sublevel of the nd state for polarizer an-
gles (31»32

(v) The quadrupole 4§ and hexadecapole 4" align-
ments are defined in Eq. (31), given analytically in Table
IV, and illustrated in Fig. 6. These alignment tensors re-
express information concerning the relative populations
of the various magnetic sublevels in a spherlcal-tensor
basis.

In especially simple cases (e.g., =0 or 7/2) one can
work out the fractional populations in the nd state by
more elementary methods than those employed here.
Such an analysis has been performed previously by Jeys
[47] and Jeys et al. [48] in a discussion of selective field
ionization of Rydberg states of Na. The latter authors
consider excitation of the Na(34d) state through the
32P, ,, intermediate state using collinear laser beams that
propagate perpendicular to the axis of quantization 2
When a fast-rise (ionizing) electric-field pulse is applied to
the Rydberg ensemble immediately following two-step
laser excitation, the result is to project the |JM;) fine-
structure Rydberg states onto uncoupled |LSM;M. )
states, a situation Jeys et al. refer to as diabatic passage
to intermediate fields. As the ionizing field in their exper-
iment further increases in strength, the Rydberg atoms in
the various populated |M;| states give distinguishable
selective-field-ionization signals; hence they analyze the
projected populations in the orbital basis prior to ioniza-
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tion. Their s1mpler experimental geometry admits an
analysis exclusively in terms of Clebsch-Gordan algebra.
But their percentage populations, given in Table I of Ref.
[48], should be identical to our pyy, of Eq. (29).

In particular, the case Jeys et al. call “7 polarization,”
corresponds to 8,=0 for J; =1 in the present analysis.
Their quoted populations: 40% for M; =0, 60% for
|M;|=1, and 0% for |M, | =2, indeed agree with our re-
sults in Fig. 4(a), where p;=0.4 and 2p; =0.6.

The case Jeys et al. call “o polarization,” with excita-
tion through 32P, , in a collinear geometry, is not pre-
cisely the same as any in our mutually perpendicular
geometry. For the present experimental arrangement
shown in Fig. 2, when B,=pB,=w/2, the electric-field
directions of the two lasers are perpendicular to each oth-
er, while in the o case of Ref. [48] they are parallel. But
we can compare to their results for J; =7, since as shown

in Table III, the fractional populations for this intermedi-
ate state are independent of f8; and so our results for
B,=/2 should be identical to theirs. Indeed, the percen-
tages quoted in Ref. [48] for |M, =0, 1, and 2 agree with
the population p,=0.1, 2p,=0.3, and 2p,=0.6 in Fig.
4(a).

Although excitation through the 32P;,, state is not
discussed in [48], it is addressed in an Appendix to Jeys
[47]. From the latter reference we determined the time-
averaged probabilities for two-step laser excitation in
which the electric-field vectors of both lasers are parallel

to the z axis as 11, 1, and zero for M; =0, 1, and 2, re-

spectively. These predictions agree precisely with ours as
inferred from Table III and given numerically in Fig.
4(c).

Finally, we note that the observation of Jeys et al. of
their predicted populations of 10% for M; =0 and 60%
for |M;|=2 in field ionization after a sufficiently rapid
passage to intermediate fields (see their Fig. 3) verifies the
insignificance of hyperﬁne effects in their experiment.
This observation, in turn, corroborates our assumptlon
(in Sec. IT A) that hyperfine precession in the 3 2p, , state
does not affect the outcome for an excitation process
whose timing is similar to those considered in Sec. L.

Applying the methods of this paper to other atoms or
excitation schemes would require in most cases some
modifications in the formulation, for example, to accom-
modate ground states with L >0 or spin multiplicities
other than doublet, hyperfine effects, quantum beats in
time-resolved experiments, circular polarization, and

" different beam propagation geometries. We hope that the

details of the present analysis will guide the description of
other cases using density-matrix and tensorial methods.
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