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Abstract. We have investigated various aspects of polarisation/correlation effects at low 
energies for the prototypical positron-N2 system. First, we have found that, like positron-Hi, 
cross sections, those for this system are highly sensitive to terms in the (adiabatic) polarisa- 
tion potential that explicitly depend on the sign of the charge of the projectile. Insight 
into the nature of these sign-dependent distortions is afforded by three-dimensional graphs 
of polarised N, density functions. Second, we have explored and characterised non- 
adiabatic (correlation) effects in this system using a simple two-parameter model. We have 
found that the onset of these effects in the near-target region in positron scattering is much 
more gradual than in electron scattering. By including in scattering calculations adiabatic 
and non-adiabatic effects, we obtain theoretical positron-N2 cross sections in good agree- 
ment with recent experimental data. 

1. Introduction 

The last few years have seen a dramatic increase in research on low-energy positron- 
molecule scattering (see, for example, the review by Armour (1988)). This activity is 
in part due to new technology for producing improved positron beams (Canter and 
Mills 1982). Nevertheless, there remain considerable uncertainties in measured values 
of positron-molecule cross sections at collision energies below a few eV (cf Hoffman 
et a1 1982, Charlton et al 1983, Sueoka and Mori 1984), and fundamental questions 
plague the calculation of theoretical positron scattering cross sections at these energies. 

Below the threshold for positronium formation, the most serious of these questions 
concerns polarisation and (short-range) correlation effects. Although these effects 
significantly influence low-energy cross sections, their inclusion in computational 
methods via accurate yet tractable approximations is problematical. 

Two groups have recently initiated studies based on ab initio treatments of these 
effects. Armour and collaborators (Armour 1984,1985, Armour and Baker 1985, 1986, 
1987) have published a series of increasingly sophisticated variational calculations of 
positron-H, collisions based on the Kohn method. Tennyson (1986) and Tennyson 
and Morgan (1987) have applied the R-matrix method to positron scattering from H2, 
N2 and CO. 

An alternative to these ab initio theories is the use of a physically motivated model 
potential. At large distances from the target, the form of such a potential is simple 
and familiar: for a projectile at position ( r , ,  e,) (in a body-fixed coordinate system), 
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the asymptotic polarisation potential is an analytic function of the spherical and 
non-spherical polarisabilities of the target, a. and a z ,  i.e., 

This form pertains to both positron (plus superscript) and electron (minus superscript) 
scattering; it is the asymptotic limit of the polarisation potential as calculated in 
second-order perturbation theory (Castillejo et a1 1960; ch 2 of Gibson 1982). Hence 
this form is independent of the sign of the charge of the projectile. 

But nearer the target, the simple form (1) does not accurately characterise polarisa- 
tion effects, the second-order perturbation approximation is invalid, and V,f,,( rq, e,) 
does depend on the sign; i.e., the polarisation potential for an incident positron differs 
from that for an incident electron. In 1984, Morrison et a1 demonstrated the importance 
of this dependence for positron-H, cross sections and calculated a sign-dependent 
potential which is accurate beyond second order in the projectile-target interaction 
by treating the projectile’s position adiabatically and determining via the linear vari- 
ational method the decrease in the system energy due to polarisation of the molecule. 

The importance of explicitly allowing for the sign of the projectile’s charge in 
generating a polarisation potential for positron scattering calculations has been an 
issue because of the widespread use of (model) polarisation potentials that were 
determined not for the positron-molecule system, but for the corresponding electron- 
molecule system. This practice continues to the present day. Thus Jain (1986a, b) and 
Gianturco et a1 (1987) have suggested that the sensitivity to the sign of the projectile 
seen by Morrison et a1 in positron-H, cross sections may be a fluke: that H,, nearly 
spherical and with only two bound electrons, is somewhat atypical, and that for heavier 
targets a treatment of polarisation that does not distinguish between electrons and 
positrons as projectiles may be approximately valid. Investigation of this question for 
a typical positron-molecule system, positron-N,, is one focus of the present study. 

Our second area of concern-non-adiabaticity-becomes important within the 
molecular charge cloud. Here the adiabatic approximation breaks down completely 
and non-adiabatic effects become important: particularly correlation effects. Several 
investigators have developed and tested methods, ab initio and model-based, for 
including such effects in electron scattering (see Morrison et a1 1987 and references 
therein, Schneider and Collins 1983, Huo et a1 1987). Some positron-molecule studies 
use these potentials without change (see references in table I1 of Morrison 1986). 

However, the importance in the near-target region of higher-order perturbation 
terms, which are senstive to the nature of the projectile, raises questions about the use 
of electron-molecule polarisation potentials in positron-molecule scattering calcula- 
tions. Moreover, some methods for treating non-adiabaticity, such as the non- 
penetrating approximation (Temkin 1957), which we have applied to the electron-H, 
(Gibson and Morrison 1984) and electron-N, (Morrison et a1 1987) systems, seem 
inappropriate on physical grounds to positron-molecule scattering. 

A central finding of the present study (see § 4) concerns the onset of these non- 
adiabatic effects as the projectile nears the target. To characterise this onset, we have 
used a two-parameter cut-off function that smoothly eliminates the adiabatic polarisa- 
tion potential as rq + 0. By comparing our calculated cross sections with measured 
values, we can determine optimum parameters in this function; significantly, the values 
we obtain contrast strikingly with those required for electron-N, scattering. (This 
strategem is similar in spirit to that used in recent positron-atom studies (Nakanishi 
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and SchrLder 1986a, b)). We offer in 0 4 an explanation based on the underlying 
physics of positron and electron collisions for the differences in the onset of non- 
adiabatic phenomena in the two systems. 

2. Theory 

For the scattering processes of interest here, the fixed-nuclei approximation is valid 
(Temkin and Vasavada 1967), so we work in a body-fixed (BF)  reference frame (Lane 
1980) and choose the origin of a single-centre coordinate system at the centre of mass 
of the molecule and the z axis along the internuclear axis. We denote by rm, R,, and 
rq the spatial coordinates of the molecular electrons, the target nuclei, and the scattering 
projectile. A semi-colon connotes parametric dependence on whatever variables appear 
after it. 

Thus for a projectile at rq scattering from a molecule with Ne target electrons at 
locations collectively denoted by rm and with N ,  nuclei with charge 2 , f ixed  at R,, 
the Coulomb potential is 

In the body-frame fixed-nuclei scattering equations, which result from projecting 
out of the time-independent Schrodinger equation for the positron-molecule system 
the (Born-Oppenheimer) ground electronic state of the target (see Morrison 1988), 
the effective positron-molecule interaction potential VL,( rq ; R )  is the sum of static 
and polarisation terms, 

V L ( r q ;  R )  = V 2 r q ;  R I +  v;ol(rq; R ) .  (3) 

The electrostatic term is the average (the integral with respect to electronic coordinates 
rm) of the Coulomb interaction ( 2 )  over G0(rm; R ) ,  the ground electronic state of the 
target at internuclear separation R, i.e., 

V,:(r, ; R )  = ($01 v:oll,l$o). (4) 

To characterise the polarisation potential V;ol( rq ; R )  it is useful to consider three 
‘regions’ of configuration space. These regions can be loosely delineated by rq, the 
distance of the positron from the molecular centre of mass. In the asymptotic region 
the polarisation potential reduces to the simple sign-independent analytic form (1). 
In the intermediate region, at values of rq outside the molecular charge cloud but near 
enough to it that equation (1) is invalid, one can obtain an accurate polarisation 
potential for low-energy collisions (impact energies less than about 10 eV), by assuming 
(Morrison and Hay 1979, Truhlar et a1 1979) that the target responds adiabatically to 
the proj!ctile-i.e., that the system is accurately represented by an adiabatic Hamil- 
tonian %&,, which is the sum of the (Born-Oppenheimer) electronic Hamiltonian of 
the target and the Coulomb interaction (2) with the fixed radial coordinate rq treated 
as a parameter. 

The present positron-N, study uses such a treatment. At each internuclear separ- 
ation R, the seven N2 molecular orbitals (1 ug , 1 U,,  2ug, 2u,, 3ug, 1 vu) are allowed to 
fully relax in the presence of a point charge whose location rq is ‘frozen’. From the 
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resulting distorted molecular orbitals we construct the polarised electronic wavefunc- 
tion (clp’( rm ; rq, R )  of the target. The adiabatic polarisation potential at each R is just 
the difference between the expectation values of eD with respect to the polarised 
and unpolarised target wavefunctions, i.e., 

In the region nearest the target, within the molecular charge cloud, the adiabatic 
polarisation potential improperly correlates the projectile and the bound electrons: 
the adiabatic approximation overestimates correlation effects, leading to a polarisation 
potential that is too attractive. In this region, short-range correlation (e.g. virtual 
positronium formation) is important, and we must allow for non-adiabatic effects. (An 
adiabatic treatment in this region would be more appropriate were we determining a 
proton-molecule interaction potential, where the dominant short-range correlation 
effect is virtual hydrogen-atom formation.) 

Our treatment of non-adiabaticity distinguishes in two ways the present positron 
polarisation potentials from our non-adiabatic electron potentials (Gibson and Mor- 
rison 1984, Morrison et al 1987). First, we do not use the non-penetrating approxima- 
tion of Temkin (1957) to incorporate non-adiabatic effects in positron scattering 
potentials; this approximation, which essentially entails ‘switching off’ the Coulomb 
interaction between the projectile and the bound electrons whenever the former is 
inside the charge cloud of the latter, is inappropriate for positron collisions (see 
Morrison et a1 1984). Second, we retain all multipoles in the polarisation potential. 
(For electron scattering, only the dipole term need be retained.) 

Our primary interest in this study is the physical nature of non-adiabatic corrections 
to the adiabatic positron-molecule polarisation potential. We approximate these 
corrections by simply multiplying the polarisation potential, in either its asymptotic 
or adiabatic form (equations (1) or (5)), by a spherical cut-off function that depends 
on adjustable parameters rc and p :  

C(rq)  = 1 -exp[-(rq/rJP]. 

Several investigators have used such functions in prior positron-molecule studies (see 
§ 2.1 of Morrison eta1 (1984) and references in Morrison (1986)). This function 
accounts for non-adiabatic effects by smoothly eliminating the polarisation potential 
as rq decreases from rc to zero. The ‘power parameter’ p controls how sharply this 
potential vanishes, or alternatively, the size of the region of non-adiabaticity and the 
abruptness of the onset of non-adiabatic effects. Thus, within this scheme, p charac- 
terises the coarse features of these effects. 

Cut-off functions like equation (6) have been used to approximate non-adiabatic 
corrections in many electron-molecule scattering calculations (see Morrison 1983 and 
references therein). In such studies, the power parameter is usually chosen as p = 6 
and the ‘cut-off radius’ rc is adjusted to force calculated cross sections to replicate 
some experimentally determined feature of the system such as a shape resonance. 

The choice p = 6 in electron-molecule scattering reflects the suddenness of the onset 
of non-adiabatic effects as rq decreases to zero. The principal non-adiabatic correction 
is due to a velocity dependence in the polarisation potential; this dependence arises 
when a slow scattering electron ‘falls into’ the strongly attractive, short-range static- 
exchange potential well. The electron’s local kinetic energy rapidly becomes compar- 
able to that of the bound electrons, which completely invalidates the adiabatic 
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hypothesis. The resulting correlation potential is considerably weaker near the origin 
than the adiabatic potential. 

However, for positron-molecule scattering no comparable mechanism exists to 
cause the sudden onset of non-adiabatic effects. Because the positron-molecule static 
potential is repulsive, velocity-dependent non-adiabatic effects are much less important 
than in the corresponding electron-molecule system. Hence the dominant non- 
adiabatic effect is due to virtual positronium formation, which occurs gradually as the 
positron penetrates the molecular charge cloud. 

Thus the physics of non-adiabaticity in positron-molecule scattering argues for 
using a small value of the power parameter-a value that permits a gradual onset of 
non-adiabatic effects. In our positron-N, study (§ 4), we characterise the dominant 
non-adiabatic effects by varying this parameter, comparing calculated cross sections 
with experimental data. 

3. Computational considerations 

3.1. Representation of the N2 target 

The ground-state (X ‘E l )  N2 wavefunction appears in both the static and polarisation 
components of the positron-N, interaction potential (equation (3)). We represented 
this function in the Hartree-Fock approximation, calculating molecular orbitals using 
a (10s6p2d/6s4p2d) basis of contracted nucleus-centred Cartesian Gaussian functions 
(Morrison and Hay 1979). This basis is an augmentation of a (9s5pld/5s3pld) basis, 
the additional (uncontracted) s, p and d functions providing sufficient flexibility to 
accommodate distortions of the N2 charge density. 

The static positron-molecule potential in the region of the target is strongly repul- 
sive. Consequently the nature of the static and polarisation potentials outside this 
region, including their long-range functional forms, significantly influences the cross 
sections we want to determine. In the asymptotic region ( r, + CO), the static potential 
(4) reduces to a simple analytic form (at internuclear separation R )  whose Legendre 
projections 

U:( rq ; R )  = - 2 h + 1  [: V:(rq ;  R)P,(cos e,) sin 8, de, 
2 

are proportional to the permanent multipole moments c, (R) ,  as 

(7) 

where the plus sign corresponds to positron and the minus to electron scattering. 
The values of the lowest three permanent moments, calculated from the static 

potential (based on our (10s6p2d/6s4p2d) electronic function) at the equilibrium 
internuclear separation Re = 2.068ao are compared to experimental values in table 1. 
We extracted the theoretical moments at r, = 10.0a0, by which point each Legendre 
projection uy(rq; R )  is given (to the stated precision) by its multipolar form (8). 
Similarly, we determine the induced polarisabilities, cyo and a2 in the asymptotic form 
( l ) ,  from the calculated adiabatic polarisation potential V&,(rq ; R )  at rq = 25.0~2,. the 
values of these moments also appear in table 1. 
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Table 1. Permanent and induced moments for N2 at R = 2.0680,. 

Permanent moments 

Theorya Experimentb 

c,(R,) = 0.91eai 
c4(Re) = 7.49~20: 
c6(Re) = 20.68eag 

11.04/ i 0.07eai 

Induced moments 

Theoryc Experimentd 

a, (R)  = 11.420; 11.74*0.0040; 
a 2 ( R )  = 3.370; 

a Morrison et al (1987). Extracted at rq = 10.00,. 

2.96 + 0.030; 

Herzberg (1950), Alms et al (1975). 
Present study. Moments extracted at rq = 25.00,. 
Miller and Bedersen (1978) and references therein. 

3.2. Parameters of the scattering calculations 

In the fixed-nuclei approximation, the total cross section is the sum of contributions 
from independent calculations in various electron-molecule symmetries (see Morrison 
1988 and references therein). These symmetries correspond to the irreducible rep- 
resentations of the point group of the molecule, and for N2 (the point group of which 
is Doah) are defined by the projection A of the projectile’s orbital angular momentum 
on the internuclear axis and by the behaviour of the scattering function under inversion 
through the origin (gerade or ungerade). Positron-molecule cross sections decrease 
rapidly with increasing A, and for positron-N, we can converge the total cross section 
(at energies less than or equal to 10eV) to 1% by including contributions from 
Z,, E,, nu, IIg , Ag and A, symmetries. 

Within each symmetry, the most important convergence parameters are the number 
of partial waves (spherical harmonics Y f )  included in the single-centre expansion of 
the scattering function and the value r,,, of the radial projectile coordinate at which 
we extract the scattering matrix. To satisfy our 1% convergence critieria, we require 
five partial waves in the Z symmetries ( A  = 0) and four in the II (A = 1) and A (A = 2) 
symmetries. In the Legendre expansion of the static potential (see equation (7)) we 
include (even-A) projections up to A,,, = 14. We must propagate the scattering function 
to rmax = 8 6 . 0 ~ ~ .  We checked these values using the time-honoured method of including 
more partial waves (up to I,,, = 12) and propagating further (to r,,, = 100.0 ao). All 
is well. 

4. Results 

To exhibit the nature of induced distortions of a molecular charge cloud by an incident 
projectile, electron or positron, we compare (in 9 4.1.1) neutral and polarised one- 
electron N2 probability densities for various (fixed) projectile locations. These three- 
dimensional graphs evince the sensititivity of polarisation effects to the sign of the 
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charge of the projectile. Further insight into this response follows from examining 
individual molecular orbitals, important examples of which appear in § 4.1.2. The 
differences seen in these graphs of probability densities translate into differences in 
the polarisation potentials themselves, which are discussed in § 4.2. These disparities, 
in turn, influence cross sections for positron-N, scattering as calculated with various 
polarisation potentials; these scattering data are compared in 0 4.3, where we reconsider 
non-adiabaticity, a central concern of this research. 

4.1. Variously polarised probability densities 

4.1.1. Total electron density functions. We calculate total one-electron probability 
densities of the (neutral or polarised) molecule from the Born-Oppenheimer electronic 
wavefunctions, qo(rm; R )  or (Ldp' ( rm;  rq, R )  (see, for example, equation (5)). For a 
wavefunction polarised by a projectile at rq, this density function is an integral over 
all but one of the spatial variables of the bound electrons, 

p ( r l ) =  I +b"'*(r,; rq, R)&")(rm; rq, R )  dr,edrN,-l.. . dr2.  (9) 

To display the polarisation distortions, we show in this section graphs of the one- 
electron density function evaluated in the xz plane, i.e. we plot p (  r l ,  e l ,  cpl = 0) for rl 
from 0 to 5a, and for from 0 to T. Figure 1, for example, shows this function for 
the X 'Xi ground state of the neutral (undistorted) N, molecule. (To enable a clear 
visualisation of these density functions, their peaks (near the nitrogen nuclei at *1.034a0 
on the z axis) have been clipped as necessary; hence the 'flat tops' in figure 1 and 
elsewhere.) 

Figure 2 shows distortions of the total ground-state density due to a positron ( a )  
and an electron ( b ) ;  these projectiles were fixed at zq = 1.5 a,, just beyond the nuclei. 
The distortions seen in these figures are not simple mirror images of one another; they 
differ in both form and extent. Thus, the extrusion of the positron-distorted density 

5.0 - 0x1s (0,) 

Figure 1. Total N, electron density function (at R = 2.068 a,,) in the xz plane. In order to 
more clearly show changes in this function due to a fixed projectile (see figure 2), its peaks 
have been 'clipped' to a value of p = 1. 
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5.0 2 -  ox is  fa,) 

Figure 2. Total N, density function polarised by ( a )  a positron and ( b )  an electron fixed 
at zq = 1.5 ao. 

in figure 2 ( a )  towards the projectile, which is shaped by that projectile’s (radial) field, 
is quite different from its counterpart in the electron-distorted density in figure 2 ( b ) .  

4.1.2. Molecular orbital density functions. Because these total densities include all seven 
molecular orbitals of N2, they obscure some features of the distortions they are designed 
to illustrate. These features appear quite vividly, however, in graphs of the most diffuse 
molecular orbitals. 

The 3ug and 2uU orbitals clearly exhibit the nature of these (adiabatic) polarisation 
distortions. The undistorted (neutral) densities for these orbitals appear in figures 3(a)  
and 4 ( a ) ,  respectively. Figures 3 ( b )  and (c)  show the strikingly different distortions 
induced in the 3u, density by an electron and a positron at zq = 1.5 a,. The lack of 
mirror symmetry in the polarised orbitals illustrated in this comparison also appears 
in the distorted 2uU orbitals in figures 4( b )  and ( c ) .  

As the distance of the (fixed) projectile from the molecule increases, the distortions 
of these densities decrease; ultimately, they regain their neutral shapes. In 9 4.2 we 
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Figure 3. ( a )  The one-particle density function evaluated in the xz plane for the 3 ~ 7 ~  
molecular orbital of neutral N,. Also shown are the density functions that result when 
this orbital is polarised by ( b )  a positron and (c )  an electron at z,  = 1.5 a,,. 

will discuss the effect on the polarisation potential of varying the projectile’s location. 
The effect of this variation on the energies of the 3a, and 2a, orbitals is shown in 
figure 5. As expected, as the incident (negatively charged) electron enters the fringes 
of the molecular charge cloud, it enhances screening of the outermost electrons from 
the nucleus, causing their binding energies to decrease; precisely the opposite behaviour 
results from the incursion of an incident (positively charged) positron. 

In any case, the way in which the positron- and electron-distorted orbitals correlate 
to the appropriate neutral energies (as r4 +a) is strongly dependent on the sign of 
the charge. These comparisons reflect again the inadequacy of a second-order perturba- 
tive treatment of polarisation, an inherently sign-independent treatment, in the non- 
asymptotic region. 

4.2. Adiabatic and non-adiabatic polarisation potentials 

The energy lowerings due to the electron- and positron-distorted density functions in 
figure 2-and their counterparts for other values of r4-are the adiabatic polarisation 
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Figure 4. ( a )  The one-particle density function evaluated in the xz plane for the 2uu 
molecular orbital of neutral N,. Also shown are the density functions that result when 
this orbital is polarised by ( b )  a positron and ( c )  an electron at zq = 1.5 a,. 
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1 

Figure 5. Energies of N2 molecular orbitals polarised by an incident electron (- - -) and 
by an incident positron (-) as a function of the distance of the (fixed) projectile along 
the z axis. Shown are these 'correlation diagrams' for polarised orbitals that correlate (as 
rq + CO) to the ( a )  3ug and ( b )  2u, orbitals of the neutral. 

potentials (see equation (6)). We have designated these potentials by the acronyms 
ADELEC (for an incident electron) and ADPOS (for a positron). The two lowest-order 
Legendre projections (cf equation (7)) of these potentials are compared in figures 6(a)  
( A  =0, the spherical projection) and 6(b) ( A  = 2). Note that as r q + q  the ADELEC 

and ADPOS potentials become identical: both reduce to the asymptotic form (1). 
The similarities between the projections of these purely adiabatic potentials are 

deceptive; quite different potentials result when non-adiabatic effects are taken into 
account. To illustrate this point, we also show in figure 6 the projections of two 
non-adiabatic polarisation potentials: the 'better than adiabatic dipole' ( BTAD) potential 
determined by Morrison et a1 (1987) for electron-N, scattering and a cut-off ADPOS 

potential. The latter produces total positron-N, cross sections that agree closely with 
measured values (see figure 10(b)); we shall discuss this ADPOS potential in the next 
section. 

These non-adiabatic potentials highlight an important difference between positron- 
and electron-induced distortions of N, . This can most clearly be seen in the diferences 
between the purely adiabatic and non-adiabatic potentials: within the approximate 
representation of non-adiabaticity inherent in both the BTAD and cut-off ADPOS models, 
these differences are 'the non-adiabatic polarisation potentials' due to, respectively, 
an electron and a positron. The spherical and A = 2 projections of these differences 
in figure 7 show that non-adiabatic effects are stronger and more extensive for a 
distorting electron than for a positron. 

4.3. Positron-N2 cross sections 

4.3.1. Total integrated cross sections. Our procedure for approximating the effects of 
non-adiabaticity-multiplying the adiabatic (or asymptotic) polarisation potential by 
the spherical cut-off function (6)-facilitates study of the importance of these effects 
to cross sections, by simply varying the adjustable parameters in C ( r q ) :  the power 
parameter p and the cut-off radius r,. Figure 8, for example, shows the sensitivity of 
the total positron-N, cross section as calculated with the ADPOS (figure 8(a) )  or ADELEC 

(figure 8(b)) polarisation potentials to variations in the power parameter p .  Figure 9 
shows their sensitivity to variation of the cut-off radius r,. 



124 B K Elza et a1 

t - -  
1 

I I 
1.0 2.0 3.0 4.0 5.0 

Rdius (sol 

I 
1 

1.0 2.0 3.0 4.0 5.0 
Rdius ( a o )  

Figure 6. Adiabatic and non-adiabatic polarisation potentials for an incident electron and 
for an incident positron: (a )  the spherical Legendre projection, and (b)  the A = 2 projection. 
For each type of projectile, two curves are shown: purely adiabatic (long broken curve for 
an incident electron, short broken curve for a positron) and non-adiabatic (dotted curve 
for an electron, full curve for a positron). The latter potentials were chosen as those that 
most closely reproduce experimental cross section data for scattering from N, : the non- 
adiabatic electron polarisation potential is the BTAD model of Morrison et a1 (1987); the 
non-adiabatic positron potential is the cut-off ADWS model (with r, = 1.59~1, and p = 1) 
discussed in 0 4. 

Two points deserve emphasis. First, cross sections calculated using a positron- 
induced polarisation potential differ qualitatively from those determined with an 
electron-induced potential. For example, the cross sections in figure 8( b), calculated 
using the cut-off ADELEC potential, exhibit structure (Ramsauer minimum) not seen 
in the identically cut-off ADPOS results of figure 8 ( a )  (nor in experimental data). Figure 
9( a )  shows, however, that we can force such a minimum into the ADPOS cross section 
by choosing an unrealistically large cut-off radius, r,> 2ao. 

This first observation confirms that the findings of Morrison et a1 (1984) regarding 
positron-H2 scattering also pertain to this typical heavier system: i.e., that the differences 
in variously polarised electron densities (0 4.1) and in the polarisation potentials 
calculated from them (0 4.2) translate into significant differences in scattering quantities. 

Second, the total cross section is especially sensitive to the sharpness of onset of 
non-adiabatic efects as controlled by the power parameter p. In order to determine 
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Figure 7. Model non-adabatic polarisation potentials for an incident electron (broken 
curves) and an incident positron (full curves): ( a )  the spherical ( A  =0)  and ( b )  A = 2  
Legendre projections. In each case, these are the diferences between the purely adiabatic 
potentials in figure 6 and their counterparts including non-adiabatic effects: the BTAD for 
an incident electron, the cut-off ADPOS for an incident positron. 

Figure 8. Total positron-N, cross sections calculated using variously cut-off ( a )  ADPOS 
and ( b )  ADELEC polarisation potentials: -, p = 1.0; - - -, p = 2.0; - - - -, p = 6.0. For 
these comparisons, the cut-off radius was fixed at r, = 1.59 a, and the power parameter p 
was varied. See also figure 9. 
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Figure 9. Total positron-N, cross sections calculated using variously cut-off ( a )  ADPOS 

and ( b )  ADELEC polarisation potentials: -, rcul = 1.59; - - -, rcu, = 2.25; - - - -, r,,, = 2.65. 
For these comparisons, the power parameter was fixed at p = 1 and the cut-off radius 
varied. See also figure 8. 

an optimum cut-off ADPOS potential, we carried out cross section studies for a wide 
range of values of r, and p. For a sharp cut-off (e.g., p = 6, the value characteristic of 
electron-molecule systems), no value of r, produced cross sections that agreed even 
qualitatively with experimental values. Only by 'softening' the exponential in the 
cut-off function by using p = 1 and thereby ensuring a gradual onset of non-adiabatic 
effects, could we find a cut-off radius that produced credible cross sections (see figures 
8(a)  and 9(a)).  Interestingly, use of this power parameter to cut off the ADELEC 

potential forced cross sections for that potential away from experiment. 
This second finding suggests that in more sophisticated treatments of correlation 

and polarisation in positron scattering, it will be important to consider these phenomena 
within the context of the system at hand, rather than by reference to the corresponding 
electron scattering system. 

The inability of a sharply cut-off polarisation potential to produce qualitatively 
correct positron-N, cross sections was first noticed by Darewych (1982) in body- 
frame/fixed-nuclei calculations. Rather than a fully adiabatic potential, Darewych 
used a cut-off asymptotic polarisation potential constructed by multiplying the 
asymptotic form (1) by the cut-off function (6). Using p = 6 and varying r, ,  Darewych 
found that 'no single value of [the cutoff radius] gives a shape like the observed 
low-energy [experimental] results over the entire energy range E d 10 eV.' Darewych 
thus had to resort to an energy-dependent cut-off function obtained by adjusting r, at 
each energy to ensure agreement with experiment. 

In the present study, using the cut-off ADPOS potential, we were able to obtain an 
energy-independent cut-off function-equation (6) with r, = 1 . 5 9 ~ ~  and p = 1-that 
produces qualitatively correct cross sections over the entire energy range E d 10.0 eV. 
(These cross sections and the corresponding eigenphase sums appear in table 2.) The 
essential differences between this potential and that used by Darewych are (i) the 
presence of adiabatic effects (which depend on the sign of the charge of the projectile) 
that are not a part of the (sign-independent) asymptotic form; and (ii) a more gradual 
onset of non-adiabatic effects as the projectile approaches the target. 

The importance of proper inclusion of non-adiabatic effects is illustrated in figure 
10( a ) ,  which compares cross sections for identically cut-off ADPOS and ADELEC polarisa- 
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Table 2. Total and partial cross sections (in a:) and eigenphase sums (in radians, shown 
in parentheses) for positron-N, scattering. 

0.25 3 1.689 4.026 0.140 0.899 36.771 

0.50 11.693 5.964 0.238 1.898 19.827 

0.75 4.739 7.017 0.340 2.651 14.811 

1 .o 1.955 7.426 0.446 3.156 13.082 

1.5 0.703 7.094 0.663 3.590 12.232 

2.0 1.328 6.093 0.874 3.536 12.104 

3.0 3.546 3.924 1.224 2.851 11.995 

5.0 6.868 1.296 1.522 1.449 11.847 

7.0 8.344 0.414 1.419 0.756 11.765 

9.0 8.774 0.332 1.151 0.550 11.658 

10.0 8.777 0.428 1.007 0.547 11.594 

(0.232) (0.083) (0.013) (0.031) 

(0.212) (0.143) (0.023) (0.062) 

(0.178) (0.191) (0.034) (0.089) 

(0.144) (0.228) (0.045) (0.112) 

(0.081) (0.278) (0.066) (0.148) 

(0.027) (0.304) (0.087) (0.174) 

(-0.063) (0.313) (0.126) (0.201) 

(-0.204) (0.267) (0.185) (0.209) 

(-0.322) (0.197) (0.221 ) (0.192) 

(-0.430) (0.125) (0.237) (0.167) 

(-0.481) (0.089) (0.240) (0.153) 

i 

4.0 6.0 8.0 1.0 I 
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Figure 10. Total positron-N, cross sections. ( a )  Comparison of identically cut-off model 
polarisation potentials; for each calculation, the parameters in the cut-off function of 
equation (6) were chosen as p = 1 and r, = 1.59 a,. Also shown are experimental data of 
Hoffman elal  (1982) and the R-matrix theoretical results of Tennyson (1986). ( b )  Com- 
parison of our best cut-off ADPOS results with existing experimental data. 

tion potentials. For perspective, we also show in this figure the R-matrix results of 
Tennyson (1986) and the experimental data of Hoffman et a1 (1982). Additional 
experimental data (Charlton et a1 1983, Suoeka and Mori 1984) are compared with 
our optimised cut-off ADPOS results in figure 10( b ) .  In spite of the uncertainty in the 
various experimental results below -3 eV, these data support the veracity of the ADPOS 
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Figure 11. Total differential positron-N, cross sections at impact energies of ( a )  1.5 eV 
and ( b )  10 eV as calculated using identically cut-off ADELEC (- - -) and ADPOS (-) 
polarisation potentials. The parameters in the cut-off function in these calculations were 
r,=1.59aO a n d p = l .  

potential using a very mild cut-offunction. No set of cut-off parameters rc and p could 
produce such agreement when either the ADELEC or asymptotic forms were used. 

4.3.2. Diferential cross sections. Not surprisingly, differential positron-N2 cross sec- 
tions calculated using (identically cut-off) ADPOS and ADELEC polarisation potentials 
are different. Interestingly, they differ primarily in the forward direction, as shown in 
figure 11 at a low (1.5 eV) and a high (10.0 eV) energy. 

Apart from their intrinsic interest, the energy and angle dependences of the differen- 
tial cross section provide useful guidance in the absolute normalisation of experimental 
positron scattering data (see, for example, Hoffman et a1 1982). This information is 
compactly represented by the three-dimensional graph in figure 12, which presents 
data calculated with the cut-off ADPOS potential that gives the total cross sections in 
figure 10. 

5. Conclusions 

The graphs of total and orbital electron densities for polarised states of N2 ( 8  4.1) 
illustrate the nature of adiabatic distortions induced by an incident positron and 



Positron- molecule scattering theory 129 

- 1: I 

h 

Figure 12. Total differential positron-N, cross sections for impact energies less than or 
equal to 10 eV as calculated using the cut-off ADPOS polarisation potential of figure 11. 
The corresponding integrated cross sections are compared with experiment in figure 10( b ) .  

demonstrate how different these distortions are from those induced by an electron. 
The observation that the resulting adiabatic polarisation potentials (figure 6) depend 
on the nature of the projectile extends to this prototypical positron-molecule system 
conclusions of our earlier research on scattering from H2.  This aspect of positron 
scattering is to be expected from the high sensitivity of positron scattering cross sections 
to polarisation effects in general. As the potential and cross section graphs in § 4 attest, 
non-adiabatic effects exacerbate this dependence, especially at low impact energies. 

Indeed, both adiabatic and non-adiabatic effects appear to be essential to a physi- 
cally realistic model of polarisation in positron scattering: only by including both could 
we generate cross sections in agreement with experimental data. Significantly, to do 
so we had to adopt a far softer cut-off than that used in electron scattering calculations. 
This suggests that the nature of non-adiabaticity in positron scattering is essentially 
different from that in electron scattering. In the latter case, velocity-dependent correc- 
tions to adiabatic polarisation effects are of crucial importance near the target; but, 
in positron scattering, correlation effects (which give rise to virtual positronium forma- 
tion) appear gradually as the projectile nears the target, where they become dominant. 

We hope that this study will contribute to the formulation of an ab initio (parameter- 
free) model polarisation potential for positron scattering from molecules that accurately 
reflects the essential physics of their interaction. 

Acknowledgment 

This research was supported by NSF grant PHY-8505438. 

References 

Alms G R, Burnham A K and Flygare W H 1975 J. Chem. Phys. 63 3321-32 
Armour E A G 1984 J.  Phys. E:  At. Mol. Phys. 17 L375-82 



130 B K Elza et a1 

Armour E A G 1985 J. Phys. B: A t .  Mol. Phys. IS 3361-8 
- 1988 Phys. Rep. 
Armour E A G and Baker D J 1985 J. Phys. E :  At. Mol. Phys. 18 L845-50 
- 1986 J. Phys. B: At. Mol. Phys. 19 L871-5 
- 1987 J. Phys. B: At. Mol. Phys. 20 6105-19 
Canter K F and Mills A P Jr 1982 Can. J. Phys. 60 551-64 
Castillejo L, Percival I C and Seaton M J 1960 Proc. R. Soc. A 254 259-65 
Charlton M, Griffith T C, Heyland G R and Wright G L 1983 J.  Phys. B. A t .  Mol. Phys. 16 323-41 
Darewych J W 1982 J. Phys. B: At .  Mol. Phys. 15 L415-9 
Gianturco F A, Jain A and Pantano L C 1987 Phys. Rev. A 36 4637-43 
Gibson T L 1982 PhD Tnesis University of Oklahoma (unpublished) 
Gibson T L and Morrison M A 1984 Phys. Rev. A 29 2497-508 
Herzberg G 1950 Spectra of Diatomic Molecules (New Jersey: Van Nostrand-Reinhold) 
Hoffman K R, Dabaneh M S, Hsieh Y F, Kaupilla W E, Pol V, Smart J H and Stein T S 1982 Phys. Reo. 

Huo W, Gibson T L, Lima M A P and McKoy V 1987 Phys. Rev. A 36 1632-44 
Jain A 1986a J. Phys. B: At. Mol. Phys. 19 L105-10 
- 1986b J. Phys. B: A t .  Mol. Phys. 19 L807-13 
Lane N F 1980 Rev. Mod. Phys. 52 29-120 
Miller T M and Bedersen B 1978 Adv. At. Mol. Phys. 13 1-55 
Morrison M A 1983 Ausr. J. Phys. 36 239-86 
- 1986 Positron (Electron)-Gas Scattering ed W E Kaupilla, T S Stein and J M Wadehra (Singapore: 

- 1988 Ado. At. Mol. Phys. 24 51-156 
Morrison M A, Gibson T L and Austin D 1984 J. Phys. B: A t .  Mol. Phys. 17 2725-45 
Morrison M A and Hay P J 1979 Phys. Rev. A 20 740-8 
Morrison M A, Saha B C and Gibson T L 1987 Phys. Rev. A 36 3682-95 
Nakanishi H and Schrader D M 1986a Phys. Rev. A 34 1810-22 
- 1986b Phys. Rev. A 34 1823-40 
Sueoka 0 and Mori S 1984 J. Phys. Soc. Japan 53 2491-2500 
Schneider B I and Collins L A 1983 Phys. Rev. A 27 2847-53 
Temkin A 1957 Phys. Rev. 107 1004-9 
Temkin A and Vasavada K V 1967 Phys. Rev. 160 109-17 
Tennyson J 1986 J.  Phys. 8: At .  Mol. Phys. 19 4255-63 
Tennyson J and Morgan L 1987 J ,  Phys. El: A t .  Mol. Phys. 20 L641-6 
Truhlar D G, Dixon D A and Eades R A 1979 J. Phys. B: A t .  Mol. Phys. 12 1913-9 

A 25 1393-401 

World Scientific) pp 100-10 


