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Abstract. We have investigated a systematic procedure for representing, as a separable
expansion, the exchange interaction in electron–molecule scattering. Illustrative calculations of
scattering quantities (eigenphase sums, total cross sections and rotationally-resolved differential
cross sections) have been performed for electron scattering from molecular hydrogen in the
fixed-nuclear-orientation approximation. The exchange basis can be constructed from the
same Cartesian Gaussian functions used to generate the near-Hartree–Fock static interaction,
supplemented by an even-tempered series of Gaussian functions located on the molecular centre
of mass. Particular emphasis is placed on examining the convergence properties of this series.

1. Introduction

A major obstacle to the accurate calculation of low-energy electron–molecule scattering
cross sections is the non-local part of the interaction potential that arises from exchange and
bound–free correlation effects. These interactions significantly increase the computational
demands incurred by solution of the Schrödinger equation. One approach, which is capable
of yielding useful results, is to adopt a physically realistic local model potential (Morrison
and Collins 1978). For electronically elastic collisions, such a model must include firstly
the local static interaction between the incoming electron and the ground state of the
target molecule. The non-local exchange potential can be viewed as a correction to this
static potential due to the imposition of antisymmetry on the total electronic wavefunction
describing the scattered electron plus target electrons. This enforcement of the Pauli
exclusion principle keeps apart electrons of like spin and is described by an exchange
interaction, the isotropic component of which should be attractive (Hara 1967). Local
exchange potentials, for example those based on treating the target electrons as a free-
electron gas, demonstrate this property (Morrison and Trail 1993). Model exchange
potentials have been used in the study of electronically elastic collisions of electrons with a
range of diatomic (Morrison and Collins 1981, Trailet al 1990) and polyatomic (Collins and
Morrison 1982, Jainet al 1991) molecules. The omission of electronically excited states
can be compensated for, at energies below the first electronic inelastic threshold, by the
addition of a third component to the interaction potential which allows for target distortion.
One example is theBTAD (better than adiabatic dipole) polarization potential used in the
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present work (Gibson and Morrison 1984). This ignores velocity-dependent effects and
further applies a non-penetrating approximation to the incident electron. There will always
be systems for which such departures from fullab initio rigour are unavoidable with existing
computer facilities.

For large polyatomic molecules with many electrons it would be reasonable to apply in
the first instance a simple free-electron gas exchange potential. More accurate results could
be obtained by ‘tuning’ the potential by, for example, treating the target ionization potential
as a parameter in a way found to be essential for smaller diatomic systems (Morrison and
Collins 1981). However, increasing use is being made of separable representations which
expand the exchange kernel in terms of products of one-electron functions (Rescigno and
Orel 1981). This approach, the focus of the present paper, has the advantage of being
a rigorous method of treating exchange while still offering computational savings in the
solution of the coupled integrodifferential equations of electron–molecule scattering theory.

For this reason, separable expansions have featured prominently in numerical solutions
of the many-particle Schrödinger equation for both bound and continuum states (Yamaguchi
1954, Lovelace 1964). The primary advantage of such expansions is that they dramatically
decrease the number of integrals one must evaluate upon introduction of a discrete basis
(as in the Schwinger variational calculations of Smithet al (1984)) or discrete grid
representations (as in the linear algebraic calculations of Collins and Schneider 1981). In
electron–molecule scattering calculations, the computational demands imposed by these
integral evaluations can be prohibitive, precluding one from studying all but the simplest
systems. Hence many investigators have adopted separable representations of non-local
potentials in studies that encompass scattering from non-polar diatomics (e.g. e–N2 in
Malegat and Le Dourneuf 1988), polar diatomics (e.g. e–LiH in Rescigno and Orel 1981),
linear triatomics (e.g. e–CO2 in Schneider and Collins 1981a), and, most recently, non-linear
polyatomics (e.g. e–CH4 in Gianturcoet al 1995).

However, unlike the Hamiltonian in a linear variational optimization of the ground-
state energy of a bound system, the exchange kernel for an electron–target system is not
governed by a minimum principle. So while the goals in choosing a basis for a separable
representation of such a kernel resemble those of bound-state calculations—to span the
region of space where the exchange operator influences the scattering function in a way that
yields accurate scattering quantities when that function is propagated into the asymptotic
region—the lack of a minimum principle eliminates the guarantee that increasing the size
of a given basis will lead to improvement (or, at worst, no change) in the quality of the
answers. This lack further implies that one cannot be certain that a converged scattering
quantity has, in fact, converged to the right answer—unless, of course, one knows the right
answer in advance, in which case one does not need a separable representation. The choice
of the basis for such a representation, therefore, is a major concern.

This issue becomes especially exigent in studies of vibrational excitation, a scattering
process that is almost pathologically sensitive to approximations in the interaction potential,
as illustrated in Trail (1991) and Morrisonet al (1987). Prior theoretical investigations by
the University of Oklahoma theory group of vibrational excitation of H2 by low-energy
electrons, aimed at resolving discrepancies between various experimental determinations
of cross sections for this process (Morrisonet al 1987), revealed the sensitivity of this
process to exchange and drove us beyond local model potentials to separable representations
(Crompton and Morrison 1993) and exact inclusions of this non-local potential (Buckman
et al 1990), a calculation that to date has been performed only for this system.

This heightened sensitivity as well as the need for high precision calculations and
independence from experimental cross section data motivated our investigation of the
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accuracy of separable representations of exchange, beginning in the present paper with
elastic scattering and rotational excitation and continuing in a subsequent paper with
vibrational excitation. This study focuses on two issues: (i) the systematic determination
of bases for expansion of the exchange operator without incurring linear dependence, and
(ii) the accuracy of scattering quantities obtained by solving the Schrödinger equation with
the separated kernel, as determined by comparison to results of exact exchange calculations
(Trail 1991). Here we explore the viability of one type of basis for such calculations,
based on an ‘even-tempered’ set of Gaussian-type orbitals. As we shall show in section 3,
although one can obtain accurate e–H2 cross sections and eigenphase sums with such a
basis, convergence of these results with respect to the basis does not necessarily ensure that
the answer is correct. Hence the intent of this paper is cautionary as well as prescriptive.

An optical potential, constructed from virtual excitations of the target electrons,
is a rigorous way of representing polarization and correlation effects (Schneider and
Collins 1983). These may also be included in the scattering equations using a separable
representation. However, the long-range nature of polarization, in comparison with
exchange, is likely to call for a greater number of basis functions, including more diffuse
ones. We have been mindful of such future applications when experimenting with the
inclusion of diffuse one-electron functions in the separable treatment of exchange.

Historically, work on separable exchange in electron collisions with small molecules
(treated as rigid rotors) was extremely encouraging. This work promised high accuracy
with small exchange bases and little more computer time than a local potential calculation
(Rescigno and Orel 1981, Collins and Schneider 1981). Subsequently, Malegatet al (1987)
studied the properties of the separable representation for electron–H2 scattering, examining
the convergence behaviour of fixed-nuclei eigenphase sums using four exchange bases.

The work described in the present paper similarly considers the nuclei to be fixed (at their
equilibrium separation) but differs from the earlier study in several ways. First, we have
calculated benchmark exact-exchange values of the scattering quantities for comparison,
using the same target wavefunction and numerical criteria comparable to those of our
separable calculations. Malegatet al used instead the exact static-exchange cross sections
of Collins et al (1978, 1980). We have performed new calculations, both at the static-
exchange level and including polarization. Given the ongoing theoretical and experimental
interest in the e–H2 system (Buckmanet al 1990, Rescignoet al 1993), it is clearly more
pertinent to focus on a full static-exchange-polarization treatment. We have also considered a
larger number of basis sets which are, in addition, inter-related by an even-tempered series
of Cartesian Gaussian-type orbitals; this is important given the absence of a variational
principle for the exchange operator. Furthermore, the use of analytically convenientGTOs is
also more relevant (than the Slater-type bases of Malegatet al) for future extensions to the
scattering of electrons from polyatomic molecules (Gianturco and Stoecklin 1994). Finally,
we note that because the study of Malegatet al was restricted to eigenphase sums, it did not
demonstrate the extent of the duplicitous convergence behaviour which we have found that
cross sections can display when calculated from a separable representation (see section 3).

In section 2 we provide details of the method used to solve the electron–molecule
scattering equations, focusing on the details of the basis sets used to construct a separable
expansion of the exchange kernel. Section 3 contains a presentation and description
of selected eigenphase sums and cross sections (partial, total and differential) for the
equilibrium geometry (bond length) of H2. Section 4 focuses on the general lessons learned
regarding the selection of exchange basis sets. These conclusions should be extendible to
calculations of polyatomic molecules as well as underpinning more complicated formulations
of exchange such as the Schwinger separable representation (McCurdy and Rescigno 1992).
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2. Method

The goal of the present work is to determine the viability of using a separable representation
of the exchange potential in calculations ofab initio cross sections for low-energy (E 6
10 eV), electronically elastic electron–molecule scattering. The hydrogen molecule provides
a convenient example of a closed-shell diatomic molecule on which to develop and test our
procedures. In the present paper we shall make the additional approximations of ‘freezing’
the nuclei at their equilibrium separation (R = 1.4 a0) and of keeping their orientation fixed.
With the z-axis coincident with the internuclear vector, this becomes the well known body-
frame fixed-nuclei (BF-FN) approximation (e.g. Morrison and Sun 1995, Morrison 1988 and
references therein). The time-independent Schrödinger equation then takes the form(

Te + Vsp + V̂ex − E
)
ψE(r) = 0 (1)

where Te and E are, respectively, the kinetic energy operator and total energy of the
incoming electron. Vsp represents the sum of the local static interaction potential and
a correlation (polarization) potential. The latter is also taken to be local; it is obtained
using linear variational theory in which the incident electron is treated as a fixed point
charge (Gibson and Morrison 1984, Morrison and Trail 1993). Specifically, the polarization
potential is obtained from the difference between the expectation values of the adiabatic
three-electron Hamiltonian for the undisturbed ground state of hydrogen and for the polarized
target wavefunction. A larger basis set of nucleus-centred Gaussian-type orbitals is used
in the variational calculation for the polarized target. Additionally, a non-penetrating
approximation is used to mimic short-range correlation by switching off the repulsive
Coulomb interaction between the scattered electron and any target electron whenever the
radial coordinate of the latter is larger (Temkin 1957).

2.1. The exchange kernel

The action of the non-local exchange potential operator on the scattering wavefunction may
be written in the form

V̂exψE(r) =
∫

K(r, r′)ψE(r′) dr′ (2)

where, for a closed-shell molecule withNocc occupied orbitalsξi(r), the exchange kernel
is given by

K(r, r′) = −
Nocc∑

i

ξi(r)
1

|r − r′|ξ
∗
i (r′) . (3)

In the case of molecular hydrogen, there is only one term in the above summation,
corresponding to the single bound molecular orbitalξ1σg. This is obtained from anSCF

calculation, using thePOLYATOM electronic structure codes (Moskowitz and Snyder 1977). A
(5s2p/3s2p) basis of contracted Gaussian-type orbitals centred on each nucleus is sufficient
to yield an electronic energy within 0.07% of the Hartree–Fock limit (Trailet al 1990).
Furthermore, the associated quadrupole moment at an internuclear separationR = 1.4 a0

is 0.451 74e a2
0, which compares favourably with the experimentally determined value of

(0.474± 0.034)e a2
0 (Ramsey 1952, Barneset al 1954, Harrick and Ramsey 1952) and the

R = 1.4 a0 value Q = 0.4568e a2
0 obtained from configuration-interaction calculations
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by Poll and Wolniewicz (1978). As each p-type Gaussian orbital has three Cartesian
components, a total of 18 functions are required as input by the electronic structure codes.
In this paper, the resulting basis is accordingly designated f18. By way of comparison, the
BTAD polarization potential is calculated using a distinct 26-function (6s3p/4s3p) basis, here
designated as b26, to represent the polarized molecule.

The exchange kernel can be cast into the separable form

K(r, r′) =
∑
αβ

χα(r)Kαβχ∗
β (r′) (4)

where the exchange basis functionsχα are the bound and virtual molecular orbitals
determined from a near-Hartree–Fock structure calculation. The symmetry of the exchange
basis, characterized by the parity and the projection of the electronic angular momentum
on thez-axis, corresponds to that of the scattering wavefunctionψE (Trail 1991). Given
the SCF coefficients ofξ1σg and theχα, together with the two-electron integrals involving
Gaussians, one can determine the exchange expansion coefficients:

Kαβ = −
∫

χ∗
α(r)ξ1σg(r)

1

|r − r′|ξ
∗
1σg

(r′)χβ(r′) dr dr′ . (5)

2.2. The exchange basis

A central problem which must be addressed is how to specify precisely the exchange basis
functions,χα. Because our basis is even tempered, its coverage of the important region
of configuration space, the region of the bound target density, is uniform, although not
necessarily uniformly convergent. We must accomplish our task without the benefit of a
stationary principle to guide us, while at the same time avoiding taking such a large basis
that the calculation becomes unwieldy or begins to suffer from linear dependencies. Some
consolation is afforded by the knowledge that the expansion in equation (4) must ultimately
converge on account of the compact nature of the exchange potential operator (Newton
1982).

It is convenient to begin with the set of molecular orbitals obtained from theSCF

calculation ofξ1σg (Rescigno and Orel 1981). Improved representations of the exchange
kernel may then be obtained by performing furtherSCFcalculations using larger numbers of
GTOs. In this way we hope to represent adequately the influence of the exchange operator on
the occupied molecular orbitals. Several bases were used to expand theχα, all of which were
obtained by augmenting an initial nucleus-centred basis withGTOssituated on the molecular
centre of mass as befits our intention to apply this strategy to vibrational excitation, which
entails varying the internuclear separation. Throughout we use normalized CartesianGTOs

of the form (Moskowitz and Snyder 1977, Taketaet al 1966, Clementiet al 1990)

ηk(r) = Nnlm(ζk)x
lymzn e−ζkr

2
. (6)

Only s-type (l + m + n = 0) and p-type (l + m + n = 1) functions are used both
on the nuclei and molecular centre of mass. In order to minimize the likelihood of linear
dependence problems while at the same time adequately spanning the exchange region, we
impose the following restriction on the choice of exponents of the centre of massGTOs:

ζk = αβk k = 1, 2, 3 . . . . (7)
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Table 1. Gaussian-type orbitals used to construct the exchange bases. Two different starting
sets ofGTOs have been used, designated (a) f18 and (b) b26. The first s-typeGTO is contracted
with the contraction coefficients given in parentheses. Details of the centre-of-massGTOs which
are successively added to these starting points are also given. The number of exchange basis
functions of different symmetries which can be constructed is given for each Gaussian set. The
number of5g exchange basis functions is 2 and 3 throughout parts (a) and (b), respectively.
(−n) means×10−n.

GTO exponents Size of exchange basis

(a) f18 s px,y,z Gram determinant 6g 6u 5u

33.644 4 (0.025 374) 2.228 2.30(−6) 5 5 2
5.057 96 (0.189 683) 0.518 3
1.146 8 (0.852 93)
0.321 144
0.101 309

f22 0.04 0.01 3.13(−7) 6 6 3
f26 0.02 0.005 3.14(−10) 7 7 4
f30 0.01 0.002 5 3.55(−14) 8 8 5
f34 0.005 0.001 25 1.46(−18) 9 9 6
f37 0.02 6.18(−22) 9 10 7
f40 0.04 6.49(−26) 9 11 8
f43 0.08 1.58(−31) 9 12 9
f46 0.16 2.45(−37) 9 13 10

(b) b26
33.644 4 (0.025 374) 1.114 2 3.10(−15) 7 7 3

5.057 96 (0.189 683) 0.259 2
1.146 8 (0.852 93) 0.06
0.321 144
0.101 309
0.03

b42 0.04 0.01 2.19(−32) 11 11 7
0.02 0.005
0.01 0.002 5
0.005 0.001 25

c42 0.04 0.01 6.55(−25) 11 11 7
0.013 333 33 0.003 333 33
0.004 444 44 0.001 111 11
0.001 481 48 0.000 370 37

Such a geometrical progression of the exponents leads to our basis set being
systematically augmented in an ‘even-tempered’ fashion (Dunning and Hay 1977, Wilson
1983). Details of theGTO bases used in the present paper are given in table 1. Calculations
have been performed with both the static potential basis (f18) and the polarization basis
(b26) as starting points. In the latter case, the two augmented bases (b42 and c42) were
chosen with the intention of investigating the sensitivity of the scattering calculations to the
ratio, β, of the geometrical progression (7).

For eachGTO basis in table 1 we also quote the value of the Gram determinant for
the fixed internuclear distance of 1.4a0. Its utility arises from the fact that for a linearly
independent basis{ηk(r)}, the Gram determinant satisfies the condition (Cushing 1975)

det
{
Sij

} ≡ det

{∫
ηi(r)ηj (r) dr

}
> 0 . (8)

If, however, the Gram determinant is zero, then the basis from which it was constructed
is linearly dependent. Numerically, this theorem translates into a guideline: the smaller



Exchange in electron–molecule scattering: I 2271

the Gram determinant, the more nearly linearly dependent the basis. For this reason, the
Gram determinant is a useful, though numerically imprecise, measure of linear independence
(Löwdin 1956).

Although the Gram determinant may depend on the size of the basis, it is especially
meaningful in comparing bases of equal dimension. Thus, the Gram determinants for the
bases f18–f46 decrease as the basis size increases. But the b42 and c42 basis sets contain
the same number of Gaussians, and the Gram determinant of the latter is much larger. This
is a consequence of the smaller overlap,Sij , between adjacent centre of massGTOs. For
even-temperedGTOs, the overlap between adjacent functions in the series depends on the
function type and the ratio of the geometrical progression,β. As an example, for s-type
functions, this overlap is 0.91 and 0.81 in the b42 and c42 cases, respectively.

Any irregularities in the behaviour of the Gram determinant with basis set could be
indicative of the onset of approximate linear dependence arising from the finite precision of
the computations. If required, more detailed information may be obtained by examining the
individual eigenvalues of the overlap matrix, the smallest of which also provides a measure
of linear independence (Löwdin 1967, Nordling 1975). Note that the form of the non-local
exchange operator (Morrison 1988)

V̂ex = −
Nocc∑
i=1

|ξi〉V̂ee〈ξi | (9)

whereV̂ee is the two-electron repulsion operator with coordinate space projection

〈r|V̂ee|r′〉 = 1

|r − r′| (10)

ensures that̂Vex is negative definite (Messiah 1961).

2.3. Eigenvalues of the separable kernel

We effect a further simplification by transforming the exchange basis,χα, into one where
the kernel is diagonal:

K(r, r′) =
Nγ∑
γ

χ̄γ (r)κγ χ̄∗
γ (r′) . (11)

Although this change of representation involves diagonalizingKαβ in (5), it further simplifies
the solution of the Schrödinger equation. Moreover, study of the kernel eigenvaluesκγ

for different basis sets provides useful information on the convergence properties of the
expansion (11). The number of terms in the expansion,Nγ , could then be reduced by
eliminating kernel eigenvectors̄χγ with small eigenvalues (Schneider and Collins 1981b,
Malegatet al 1987). In the present study all terms are retained.

The kernel eigenvalues for the scattering symmetries6g, 6u and 5u are given in
tables 2, 3 and 4, respectively. The number of eigenvalues is determined by the number of
ways molecular orbitals of the appropriate symmetry can be constructed from the available
GTOs. Results are given for all the exchange bases derived from, and labelled by, theGTO



2272 G Danby et al

basis sets f18–f46. The f37–f46 bases differ from the f34 by the addition of p-type functions
and so contribute only to the6u and5u scattering symmetries.

The kernel eigenvalues vary monotonically as more functions are added to the centre of
mass, a general behaviour which is independent of whether successiveGTOsare more diffuse
(f18–f34) or compact (f34–f46). Although the first five eigenvalues of6u symmetry (table 3)
appear to have converged for the f34 basis, the addition of successively more compact
functions (f37–f46) shows this to be an artefact.Convergence of the kernel eigenvalues in
itself is therefore an insufficient indicator of basis set completeness(Malegat et al 1987).
Nonetheless, studying the kernel eigenvalues for different basis sets is a useful precursor
to a set of scattering calculations. Since theκγ are independent of scattering energy their
evaluation is computationally much less onerous than the evaluation of cross sections at
several energies. The presence of very small (<10−10) positive eigenvalues in tables 3 and
4 indicates the limit of numerical precision being reached. Terms in (11) corresponding to
negative eigenvalues of smaller magnitude would also be strong candidates for omission.

The exchange kernel eigenvectors may be written in terms of their spherical projections:

χ̄γ (r) = 1

r

∑
l

χ̄γ l(r)Y
3
l (r̂) . (12)

For each electron–molecule symmetry we retain the lowest five partial waves, e.g.l =
0, 2, 4, 6, 8 in the6g case andl = 1, 3, 5, 7, 9 for 6u. The partial-wave projected exchange
kernel in the body-frame fixed-nuclei approximation is then

K3
ll′(r, r

′) =
Nγ∑
γ

χ̄γ l(r)κγ χ̄∗
γ l′(r

′) . (13)

This appears in the familiar radial form of the Schrödinger equation (1):[
d2

dr2
− l(l + 1)

r2
+ k2

]
u3

ll0
(r) = 2

∑
l′

V 3
ll′ (r)u

3
l′l0(r) + 2

∫ ∑
l′

K3
ll′(r, r

′)u3
l′l0(r

′) dr ′ .

(14)

In equation (14),V 3
ll′ (r) are the matrix elements of the local (static or static-polarization)

potential. To facilitate their evaluation, the local potential is expanded in terms of Legendre
polynomials (Schmidet al 1980). Because of the D∞h symmetry of the homonuclear
target, only even-order Legendre polynomials appear in these expansions. For the static and
polarization contributions the number of terms retained are four and two, respectively.

It is clear from (14) that improved efficiency in the treatment of the exchange interaction
could significantly decrease the time required to solve these equations. The exchange
integrals on the right-hand side must be evaluated over the range of the integrand, ‘the
exchange region’, which is roughly the span of the target probability density. Although
small compared to the range of the entire interaction, this region contains disproportionately
strong non-spherical potentials. So in, for example, propagative algorithms, one must solve
for the wavefunction at a large number of positions in configuration space. Often most of
the required computing time is consumed with evaluating these integrals. The benefits of
using a separable representation of the exchange kernel become more evident when (14)
is cast into integral form, the exchange term involving the evaluation of a double integral
(Schneider and Collins 1989a). Replacing this with a product of two single integrals makes
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Table 2. Eigenvalues of the exchange kernel for symmetry6g. The results demonstrate the variation in the value and number of eigenvalues which may be constructed from the
different GTO bases detailed in table 1. The eigenvalues are ordered from left to right by decreasing magnitude and multiplied by−1. (−n) means×10−n.

Basis 1 2 3 4 5 6 7 8 9

f18 7.15(−1) 1.13(−1) 7.30(−2) 3.07(−2) 8.17(−3)

f22 7.15(−1) 1.13(−1) 7.34(−2) 3.07(−2) 9.48(−3) 3.67(−4)

f26 7.15(−1) 1.13(−1) 7.36(−2) 3.07(−2) 1.01(−2) 5.29(−4) 4.48(−6)

f30 7.15(−1) 1.13(−1) 7.37(−2) 3.07(−2) 1.04(−2) 6.03(−4) 8.04(−6) 5.64(−8)

f34 7.15(−1) 1.13(−1) 7.37(−2) 3.07(−2) 1.05(−2) 6.39(−4) 1.02(−5) 1.15(−7) 1.16(−10)

Table 3. As table 2 but for6u scattering symmetry.

Basis 1 2 3 4 5 6 7 8 9 10 11 12 13

f18 1.92(−1) 6.32(−2) 3.28(−2) 1.29(−2) 3.48(−3)

f22 1.92(−1) 6.32(−2) 3.28(−2) 1.30(−2) 3.55(−3) 9.36(−6)

f26 1.92(−1) 6.32(−2) 3.28(−2) 1.30(−2) 3.59(−3) 1.49(−5) 3.81(−9)

f30 1.92(−1) 6.32(−2) 3.28(−2) 1.30(−2) 3.60(−3) 1.77(−5) 6.90(−9) 4.27(−13)
f34 1.92(−1) 6.32(−2) 3.28(−2) 1.30(−2) 3.61(−3) 1.90(−5) 8.66(−9) 4.53(−13) −5.48(−12)
f37 1.92(−1) 6.32(−2) 3.29(−2) 1.33(−2) 3.92(−3) 6.45(−5) 1.49(−7) 6.79(−11) 5.06(−15) −6.46(−12)
f40 1.92(−1) 6.33(−2) 3.32(−2) 1.40(−2) 4.63(−3) 1.80(−4) 1.84(−6) 4.51(−9) 4.32(−12) 8.33(−16) −7.60(−12)
f43 1.92(−1) 6.36(−2) 3.39(−2) 1.51(−2) 5.88(−3) 4.23(−4) 2.71(−5) 9.18(−7) 3.00(−9) 1.23(−12) 3.48(−17) −8.11(−12)
f46 1.92(−1) 6.40(−2) 3.50(−2) 1.70(−2) 7.04(−3) 1.24(−3) 3.13(−4) 2.17(−5) 2.57(−7) 6.39(−10) 2.88(−13) 1.84(−15) −8.41(−11)
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Table 4. As table 2 but for5u scattering symmetry.

Basis 1 2 3 4 5 6 7 8 9 10

f18 1.28(−1) 4.05(−2)

f22 1.28(−1) 4.05(−2) 1.12(−4)

f26 1.28(−1) 4.05(−2) 1.85(−4) 4.00(−8)

f30 1.28(−1) 4.05(−2) 2.23(−4) 7.29(−8) 4.02(−12)
f34 1.28(−1) 4.05(−2) 2.41(−4) 9.18(−8) 6.62(−12) −1.34(−12)
f37 1.28(−1) 4.05(−2) 9.46(−4) 1.69(−6) 6.73(−10) 3.37(−14) −2.38(−12)
f40 1.28(−1) 4.05(−2) 2.75(−3) 2.24(−5) 4.21(−8) 1.83(−11) 1.01(−15) −2.58(−12)
f43 1.28(−1) 4.05(−2) 5.77(−3) 1.87(−4) 1.70(−6) 3.66(−9) 1.65(−12) 1.32(−16) −2.97(−12)
f46 1.28(−1) 4.07(−2) 9.25(−3) 9.59(−4) 4.15(−5) 4.59(−7) 1.11(−9) 4.67(−13) 4.03(−17) −3.16(−12)
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the corresponding Gaussian quadratures both simpler to program and quicker to evaluate
(Schneider and Collins 1981b). This is an important consideration given that the evaluation
of the exchange kernel, in the present work, would otherwise account for at least half of the
computer time taken for a scattering calculation at a single energy. Even moreCPU time is
required for targets with more than one occupied orbital.

All of the calculations reported here obtainedu3
ll0

(rβ) on a variable 55-point mesh
between 0 and 10 Bohr by the solution of a set of linear algebraic equations (Schneider
and Collins 1989a, b). Similar implementations of this linear algebraic method were used
for both the separable exchange and benchmark exact exchange calculations reported in the
present paper. For each of the four electron–molecule symmetries (6g, 6u, 5u and5g), we
retained the six lowest channels,l. At a radial separation of 10 Bohr, the scattering functions
were used to construct a five-channel R-matrix,u(r)

{
d
dr

u(r)
}−1

. This was then propagated
out to a distance of 170 Bohr where the reactance matrixK3

ll′ was finally obtained. This
combination of the linear algebraic and R-matrix propagator methods exploits the qualitative
difference in the strength of the interaction potential at short and long range.

3. Results

Starting from the reactance (orK-) matrix we have obtained eigenphase sums and then
integrated cross sections based on body-frame/fixed-nuclei transition (orT -) matrices.
Rotationally-resolved differential cross sections were also obtained at 35 scattering energies
ranging from 0.0469 to 10 eV, the former lying just above the threshold (0.0439 eV) for the
j = 0 → j ′ = 2 rotational excitation. For energies below 2 eV, the first Born approximation
is used to scale theK-matrix elements in a way which ensures that the rotationally inelastic
cross sections obey the correct threshold law. Further details on thisSANR (scaled adiabatic
nuclear rotation) method have been given by Feldt and Morrison (1984) and Morrison and
Sun (1995).

3.1. Eigenphase sums

Malegat et al (1987) showed that the eigenphase sum will, in general, behave in an
oscillatory fashion with respect to the number of terms included in the separable expansion of
exchange. They observed monotonic behaviour with respect to the addition of eigenvectors,
χ̄γ , with successively smaller eigenvalues,κγ ; but this depends on retaining throughout
the same basis of atomic orbitals. This convergence property, derived by Malegat et al at
the static-exchange level, would provide a useful way of minimizing the number of terms
in the exchange expansion (13) once a sufficiently complete atomic orbital basis has been
identified. The latter is the particular focus of the present work.

In tables 5 and 6 we present eigenphase sums for, respectively, the6u and5u electron–
molecule symmetries. Results are quoted at the static-exchange-polarization (SEP) level for
the nine basis sets f18–f46. Exact, i.e. non-separable, exchange results are also given for
the two sample scattering energies: 3 and 8 eV (see also Trail and Morrison 1995). Static-
exchange (SE) values are given for the f46 basis to illustrate the importance of including
polarization and to provide a point of comparison with other work. As expected, the
inclusion of the attractive polarization interaction yields arithmetically higher eigenphase
sums for all four electron–molecule symmetries and at all 35 energies studied.

A striking feature of table 5 is the insensitivity of the6u eigenphase sum to the number
of GTO basis functions. We found this to be the case for all energies studied. Furthermore, all
threeGTO bases originating in polarization studies (b26, b42, c42) yielded eigenphase sums
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Table 5. 6u eigenphase sums (SEP).

Basis E = 3 eV E = 8 eV

f18 0.619 1.075
f22 0.619 1.072
f26 0.619 1.071
f30 0.619 1.070
f34 0.619 1.069
f37 0.617 1.060
f40 0.618 1.052
f43 0.620 1.058
f46 0.620 1.061

Exact 0.622 1.057

SE/f46 0.360 0.810

Table 6. As table 5 but for5u scattering symmetry.

Basis E = 3 eV E = 8 eV

f18 0.199 0.420
f22 0.201 0.419
f26 0.202 0.419
f30 0.203 0.419
f34 0.203 0.418
f37 0.219 0.419
f40 0.241 0.425
f43 0.234 0.443
f46 0.234 0.440

Exact 0.235 0.441

SE/f46 0.101 0.263

(not shown) which were effectively coincident (to graphical precision) with the results for
the f46 basis. Given the dominant role played by the6u symmetry in rotational excitation
(e.g. Trail et al 1990), this is encouraging. At the same time an exclusive reliance on the
eigenphase sum as a measure of convergence can be misleading (Morrison 1979). Partial
cross sections appear to be a more sensitive and reliable measure in addition to being closer
to the physical observables of interest.

The analogous convergence tests for the5u symmetry (table 6) demonstrate a greater
sensitivity to the basis used to construct the exchange eigenfunctions. Inspection of
the results for the f18–f34 bases might have encouraged the erroneous conclusion that
convergence had been achieved. However, enhancement of the f34 basis with more compact
GTOs (f37–f46) was necessary to reproduce the benchmark result obtained by treating
exchange directly. Without a suitable variational principle as a guide, it is clearly necessary
to design a procedure for choosing a basis set which minimizes the risk of falling prey to
this ‘duplicitous pseudo-convergence’. We further note that the eigenphase sum does not,
in general, behave monotonically with respect to increasing the size of the Gaussian basis.

As with the 6u eigenphase sums, we found for the5u symmetry that basis sets
containing additional diffuse nucleus-centredGTOs (b26, b42, c42) yielded similar values
(not shown). In this case, however, the difference between these and the f46 (and hence
exact) eigenphase sums became noticeable for energies above 6 eV. Evidently the addition
of more compact centre-of-mass functions was important in modelling the short-range
behaviour of the exchange kernel. Interestingly, this proved not to be the case for the
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Figure 1. Dependence of the6g partial cross section on the number of Gaussian-type orbitals
used to construct the exchange basis. f18 represents the same, nucleus-centred, basis used to
evaluate the static potential. For this symmetry, the successive addition of more diffuse s-type
GTOs on the centre of mass is responsible for the differences in the cross sections obtained with
the larger bases. Benchmark cross sections obtained with an ‘exact’, i.e. properly non-separable,
representation of exchange are shown as full circles.

6g symmetry, where all calculations (f18–f34, b26, b42, c42) agreed satisfactorily with the
exact results.

Figure 2. Dependence of the6u partial cross section on the number ofGTOs used to construct
the exchange basis. The curves for f22–f34 show the effect of adding successively more diffuse
p-typeGTOs on the centre of mass. The behaviour of the f37–f46 cross sections arises from the
addition of more compactGTOs on the centre of mass. Exact results are shown as full circles.
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Figure 3. As figure 2, but for the5u scattering symmetry. Again, it is p-type centre-of-
massGTOs which are responsible for the observed differences between the separable exchange
calculations.

Figure 4. Determination of the5g partial cross section using the f18GTO basis, from which
two symmetry-adapted exchange eigenfunctions may be constructed. Non-separable results are
shown as full circles.

3.2. Partial cross sections

Figures 1–4 show how the body-frame partial cross sections vary with theGTO basis used
to expand the exchange eigenfunctions. The ‘exact’ cross sections, which are also shown,
were obtained by direct evaluation of the exchange kernel without the intermediate step of
a separable expansion.

In the case of the6g cross section, the addition of two centre-of-massGTOs (to give
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the f26 basis) is sufficient to achieve good agreement with the exact-exchange results even
at the lowest scattering energies. This is particularly significant in the context of the6g

symmetry, which has no centrifugal barrier in the lowest partial-wave channel. At higher
energies the exchange interaction should become relatively less important as the integrand
in (2) includes a more oscillatory functionψE . Nonetheless, even at 10 eV the6g cross
section at the (f46) static-exchange level (17.11a2

0) is much closer to the analogous result
for the complete interaction (17.15a2

0) than are the cross sections for the static-polarization
(15.72a2

0) and static (14.58a2
0) potentials. Only results for the complete interaction appear

in figures 1–4. Similar comparisons attest to the importance of the exchange interaction at
all the other (lower) energies studied.

Figure 2 demonstrates that the6u cross section is far less sensitive than the6g

cross section, and is fairly well converged for all basis sets, though significant percentage
deviations from the exact result will inevitably occur at lower energies where the cross
section is small. At higher energies, there are indications that two of the more compact
centre-of-massGTOs are needed, i.e. that f40 is the smallest basis that yields consistently
accurate cross sections. For energies up to about 1.5 eV we also found that both the
polarization and exchange interactions play an important role in the scattering process for
this symmetry. However, the static-polarization (SP) results came closer than the static-
exchange (SE) to the cross section for the full interaction (SEP). This is a consequence of the
centrifugal barrier inhibiting exposure of the scattering electron to the exchange interaction,
in comparison with polarization effects which are of longer range. Above 1.5 eV theSE

results are closest to theSEP, but remain significantly lower for all energies studied. At
10 eV, for example, theSE partial cross section is 9.81a2

0, compared to 12.74a2
0 for the

full interaction.
The (smaller) partial cross sections in the5u symmetry (figure 3) provide a clear

amplification of many of the points which have been raised so far. That these are much
more sensitive to the exchange basis than the analogous6u partial cross sections, which
admit the same partial-wave orders (l = 1, 3, 5, 7, 9), could be attributable to two effects.
Firstly, the matrix elements of the interaction potential differ, in this case because of the
different values of the projection ofl on the internuclear axis. Second, the description
of the exchange kernel afforded by a nucleus-centred basis is likely to be less complete
in the region of configuration space covered by the centre-of-mass px and py GTOs which
contribute to the5u calculations.

For the5u symmetry only the f43 and f46 bases, containing the most compact centre-of-
massGTOs, lead to acceptable agreement with the benchmark results. The f18–f34 sequence
of basis sets, derived by successively including more diffuseGTOs, provides a misleading
appearance of convergence. This pseudo-convergence is slowest at energies below 4 eV
where exchange effects near the fringe of the target charge cloud are emphasized. The
number of more compact functions provided by the f37 and f40 bases is inadequate to
bridge the gap between the f34 and benchmark results, most notably at the higher, more
penetrating, energies. A comparison of5u partial cross sections obtained using only the
static (S) potential, as well as theSE, SP andSEPmodels, was also performed. As in the6u

case, both theSP andSE cross sections were significantly smaller than the full (SEP) results,
with the SP being closer for lower energies (below 3.5 eV). For both these symmetries,
the purely static potential gives much the smallest cross sections for all energies above the
near-threshold region.

For the5g symmetry theSP cross sections are closest to theSEP model at all energies
studied. This should not be too surprising in view of the relatively large centrifugal barrier
effects (the lowest-order partial wave in this symmetry isl = 2) and the absence of any
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resonance structure. The relative unimportance of exchange for this symmetry can also be
seen in figure 4. The f18 calculation, which allows the construction of only two symmetry-
adapted exchange eigenfunctions, agrees acceptably well with the exact results. Our decision
not to fully converge the small5g partial cross sections could compromise the accuracy
of some differential cross sections, particularly those for excitation processes. However,
it is clearly not a material consideration for the determination of the total integrated cross
section considered in the next section.

3.3. Total cross sections

Summing the partial cross sections from the preceding subsection, we obtain total integrated
cross sections which, in the body-frame/fixed-nuclei approximation, include the elastic
contribution and (adiabatically) all rotational excitations. Table 7 gives the total cross
sections for different exchange bases at nine representative scattering energies. Although
the 6g partial cross section is the largest at all energies studied, the sum is significantly
influenced by the6u and5u symmetries particularly above about 2 eV.

In general, the f46 cross sections are closest to the exact results in the final column. At
energies below 1 eV, the diffuse centre-of-mass functions of the f34 basis provide for an
adequate representation of exchange. In fact, the f34 and f46 results agree to four significant
figures for energies up to 0.3 eV. This is a consequence of our using the same numerical
parameters throughout this study rather than an indicator of the precision of the work, which
is about 1% for total cross sections.

At intermediate energies (between about 1 and 5 eV) the b42 and c42 bases perform as
well as f46. Their relative failure at higher energies is to be expected as a result of their
relatively more diffuse nature. Similar discrepancies exist at the lowest scattering energies
where the6g symmetry dominates. Of more interest is the close agreement between the
b42 and c42 results which illustrates insensitivity to the choice of the geometric progression
ratio (respectively1

2 and 1
3) defining the even-tempered part of the basis. The more compact

b42 basis generally gives marginally better agreement with the exact results for energies
above about 2 eV.

For energies up to 7 eV the b26 basis, designed to reproduce the polarization potential,
outperforms the f18 from which the static potential is derived. That the f18 basis includes
p-typeGTOswhich are more compact may explain its greater success at energies of 8 eV and
above. We mention in passing thatBF-FN calculations with anSCF target, such as those in
table 7, yield total cross sections in reasonable agreement with experiment. This agreement

Table 7. Total cross sections (a2
0) for fixed nuclear orientation at nine scattering energies

(in eV). These results derive directly from the body-frame/fixed-nucleiK-matrix to which no
‘ SANR’ scaling has been applied. Within the adiabatic nuclear rotation approximation, these
values equal the sum of the rotationally elastic and all inelastic cross sections.

Energy f18 f34 f46 b26 b42 c42 Exact

0.05 24.12 28.74 28.74 27.24 27.86 27.88 28.92
0.30 32.73 37.19 37.19 36.32 36.52 36.56 37.26
1.00 42.66 45.73 45.89 46.08 45.68 45.74 45.84
2.00 50.37 52.30 52.95 53.08 52.99 53.01 52.99
3.00 53.33 54.70 56.00 55.61 56.01 56.00 56.04
5.00 50.98 51.20 52.79 52.44 52.76 52.81 52.77
7.00 45.00 44.83 45.59 46.10 46.04 46.12 45.66
8.00 41.89 41.74 42.08 42.89 42.77 42.84 42.19

10.00 36.19 36.16 35.94 36.93 36.90 36.92 36.08
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improves significantly when vibrational averaging of the H2 motion is taken into account
(Trail et al 1990).

3.4. Rotational excitation

The body-frame/fixed-nuclei (BF-FN) calculations reported in this paper derive from a
composite of the fixed-nuclear-orientation (FNO) and rigid-rotor approximations in the body-
fixed frame of reference. In order to obtain laboratory-frame cross sections for rotational
transitions, one has to perform a rotational frame transformation (Chang and Fano 1972,
Morrison 1988) on theBF-FN transition matrix. The latter is related to theK-matrix which
may be scaled using theSANR method (Feldt and Morrison 1984) for near-threshold energies,
thereby compensating for the main deficiency of this adiabatic approach: violation of
threshold laws because of the neglect of the molecular rotation Hamiltonian. It is important
to note that the adiabatic nuclear rotation cross sections obtained from the rotational frame
transformation do not go to zero at threshold and so aSANR (or some comparable) correction
is essential for scattering at very low energies.

In addition to its use in theSANR method to provide necessary scaling of theK-
matrices, the Born approximation is also used to obtainK-matrix elements for both higher
partial waves and scattering symmetries other than those for whichBF-FN close-coupling
calculations were performed (6g, 6u, 5u and5g). By this judicious combination of close-
coupling calculations and the Born approximation we provide, for example, all theBF-FN

K-matrices needed for a rotational frame transformation in which H2 rotor states up to
j = 6 and total angular momentumJ = 4 appear. These angular momenta imply a need
for eigenvalues oflz, the projection ofl along the internuclear axis, up to 10. Converging
the elastic and rotational integrated cross sections to about 1%, however, requires only the
6 and5 symmetries.

Figure 5 shows the integral cross section for purely elastic scattering:j = 0 → j ′ = 0.
This is qualitatively similar to the6g partial cross section in figure 1, particularly below
1 eV, reflecting the dominance of this symmetry for elastic scattering. As in figure 1, the

Figure 5. Dependence of the rotationally-elastic integral cross section on the number ofGTOs

used to construct the exchange basis. Exact, i.e. non-separable exchange, results are shown as
full circles.
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addition of diffuse centre-of-mass functions converges the separable exchange calculations
in the low-energy region. However, the contribution of higher symmetries becomes evident
at higher energies through the need to include compact functions in order to bring the
separable exchange calculations in line with the exact results.

The importance at all energies of the6u and5u symmetries is evident in the convergence
properties of the integral cross section for rotational excitationj = 0 → j ′ = 2 (figure 6).
Here the addition of compact centre-of-mass functions is needed to converge the cross
section across the entire energy range of interest. The importance of the exchange interaction
in general is highlighted by the observation that our static-exchange calculations yield cross
sections which are much closer to the complete interaction calculations of figures 5 and
6 than are the analogous static and static-polarization results. The level of agreement is,
however, qualitative at best. It is worth noting that the converged integrated cross section for
rotational excitation in figure 6 agrees reasonably well with the low-energy (up to 0.5 eV)
values derived from the swarm experiments of Crompton and co-workers (Morrisonet al
1987). The level of agreement improves substantially when one rigorously includes the
influence of molecular vibration (Trail 1991).

3.5. Differential cross sections

The use of the Born approximation to provide transition matrix elements corresponding to
higher partial waves is particularly important when calculating differential cross sections
(DCS) for rotationally inelastic processes (Morrisonet al 1984). Both the long-range form
of the polarization interaction as well as the contribution from the permanent quadrupole
of H2 are included in our determination of the first Born approximationT -matrix elements.
As discussed in section 3.4 above, these supplement thoseT -matrix elements corresponding
to lower partial waves which are obtained via body-frame close-coupling calculations using
the full interaction potential (equation (14)).

In figure 7 we show the differential cross section for the elastic scattering process
j = 0 → j ′ = 0, where the energy of the incident electron is 3 eV. In addition to the

Figure 6. Dependence of the rotationally-inelastic,j = 0 → j ′ = 2, integral cross section on
the number ofGTOs used to construct the exchange basis. Results obtained with a non-separable
treatment of exchange are shown as full circles.
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Figure 7. Differential cross section for elastic scattering,j = 0 → j ′ = 0, at an incident
electron energy of 3 eV. Results are given for three exchange basis sets (f18, f34, f46) and
for exact (non-separable) exchange. The importance of different contributions to the interaction
potential is illustrated by the displayed results obtained using only the static interaction (S), the
static and exchange interactions (SE), and the static and polarization interactions (SP).

‘exact’ results obtained by a fully non-separable treatment of exchange, we display the
outcome of calculations using three of our exchange basis sets: those labelled f18, f34,
f46. These show the influence of enhancing anSCF basis (f18) with successively diffuse
(f34) and then compact (f46) centre-of-mass functions. The figure also shows the effect
of omitting certain contributions to the electron–molecule interaction potential: calculations
have been performed using a purely static potential, as well as ones omitting either the
exchange or polarization potentials.

Although all three exchange basis sets give the correct general shape for theSEP

differential cross section at 3 eV, the inclusion of the more compact functions is necessary to
yield quantitative agreement with the exact results over all scattering angles. The addition of
diffuse centre-of-mass functions is important in the region of the minimum of theDCS, but
much less important at larger scattering angles. Back scattering at this energy is influenced
more by the addition of compact functions to represent exchange, an indication of the degree
to which the scattered electron penetrates the molecular charge cloud. It is interesting that
one can obtain a reasonable result for the forward scatteringDCS even when exchange is
omitted entirely from the calculation, as seen from the static-polarization results of figure 7.
This illustrates the relative importance of the long-range potential in determining low-angle
scattering. Though one has to include all contributions to the potential to obtain the back
scatteringDCS, the static-exchange results are significantly better in magnitude and shape
than the static polarization.

For an energy of 10 eV (not shown), the static-exchange elasticDCS was found to be
more realistic than the static-polarization (and static) results for all but the lowest (. 14◦)
scattering angles. Although exchange continues to play an important role at this energy,
the DCS is insensitive to the exchange basis. Consistent with the diminishing importance of
exchange as energy increases is the predominance of forward scattering at 10 eV.

At a low scattering energy like 1 eV, the elasticDCS is more nearly isotropic and peaks
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Figure 8. As figure 7, but a scattering energy of 1 eV.

Figure 9. The differential cross section for inelastic scattering,j = 0 → j ′ = 2, at an incident
electron energy of 3 eV. The calculations illustrated are analogous to those of figure 7.

at 180◦ and the static-exchange approximation is much better than static polarization at all
angles (figure 8). That the f34 exchange basis gives good agreement with the non-separable
calculations indicates an increase in the relative influence of the exchange interaction near
the fringe of the molecular charge cloud at lower, less penetrating, energies. The situation is
similar at very low energies (0.1 eV) except that here theDCS becomes even more isotropic
as the collision process begins to resemble atomic S-wave scattering.

Figure 9 shows the differential cross section for rotational excitation,j = 0 → j ′ = 2,
for an incident scattering energy of 3 eV. At this energy the standard adiabatic nuclear



Exchange in electron–molecule scattering: I 2285

Figure 10. As figure 9, but for an incident electron energy of 1 eV.

rotation method can be used as the important assumption that all rotational states of the
molecule are degenerate applies. TheDCS is more isotropic than its elastic counterpart
(figure 7) and the importance of including more compact functions in the exchange basis is
relatively greater. The problem of ‘duplicitous pseudoconvergence’, illustrated throughout
the present paper, was particularly marked for this scattering quantity.

The inelasticDCS for E = 1.0 eV (figure 10) shows that diffuse exchange functions are
relatively more important at lower energies (cf figure 8 for the analogous elasticDCS). When
interpreting rotational excitationDCS for different treatments of the exchange interaction,
it may be helpful to bear in mind the competition between short- and long-range effects.
The tendency for the torque responsible for rotational excitation to increase with electron–
molecule separation will be countered by the weakening of the interaction at longer range
(Lane 1980).

We note in passing that forE < 2 eV off-diagonal elements of the laboratory-frame
reactance matrixKJ

jl,j ′l′ , corresponding toj 6= j ′, have been scaled to correct for deficiencies
in the adiabatic nuclear rotation approximation (Feldt and Morrison 1984).

4. Conclusions

The calculations reported in the present paper have been motivated by the widespread use
of separable expansions of the exchange interaction in electron–molecule scattering. With
increasing attention being paid to the study of polyatomic systems, such expansions seem
set to assume still greater relevance (Gianturcoet al 1995). Using molecular hydrogen as
a test case, we have performed several calculations for different exchange basis sets and
have compared the results with those obtained using an exact, or non-separable, treatment
of exchange. The intention has been to investigate the viability of this representation of
the exchange operator and, insofar as possible, to arrive at a prescription for choosing an
exchange basis without the benefit of a variational principle as a guide. It is important to
appreciate that, however systematic the choice of exchange basis, convergence to the correct
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answer cannot be guaranteed. For this reason, benchmark (non-separable) calculations will
continue to occupy an important corroborative niche.

Taking the exchange basis as being the bound and virtual molecular orbitals of an
SCF calculation, we are left with the choice of a suitable set of atomic orbitals. Mindful
of their advantages in polyatomic systems, we take for the latter normalized Cartesian
Gaussian-type orbitals. A good starting point is provided by a set of nucleus-centred
GTOs designed to recover the near-Hartree–Fock energy of the target molecule, for which
an established variational principle exists. ThisGTO basis can then be supplemented by
centre-of-mass functions whose exponents obey a geometrical progression, with a suitable
ratio lying between 2 and 3. Using centre-of-mass rather than nucleus-centred functions is
advantageous for two reasons. First, this choice minimizes the danger of linear dependence
arising from diffuse basis functions. And second, it simplifies calculation of the separable
kernel for vibrational excitation calculations, the topic of the forthcoming sequel to this
paper. One must also choose a second parameter,α, needed to determine the exponents
(see equation (7)). It is worth noting in this context that converged scattering quantities
were obtained when the most compact centre-of-massGTO had an exponent approaching
(to within a factor of about 3) that of the most diffuse nucleus-centred function of the same
type (s or p).

Because of the empirical nature of this prescription, it is important that one monitors
candidate basis sets by evaluating the corresponding eigenvalues of the exchange kernel.
The behaviour of the Gram determinant of theGTO set could provide a warning of the onset
of linear dependence, though this was not a problem which afflicted any of the present
calculations. Though it would in general be clearly impractical to repeat, as here, a series of
calculations of scattering quantities for different exchange bases, it may be useful to observe
that the differential cross section for rotational excitation seems particularly sensitive.

Even for elastic or rotational excitation cross sections, accurate calculations will require
inclusion of molecular vibration. For this reason we have been performing vibrational close-
coupling calculations of electron–H2 scattering using our exchange basis sets. A future paper
will examine the extendibility of the separable exchange method, and the utility of our basis
sets, for vibrational excitation.

Acknowledgments

We are indebted to Dr L A Collins for stimulating our initial interest in this problem and
for performing some early calculations. This work has also benefited from discussions with
Dr C W McCurdy. Support for this work came from the US National Science Foundation
(NSF grant no PHY-9408977) and many of the calculations were performed on the Cray
Y-MP at the National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign.

References

Barnes W R G,Bray P J and Ramsey N F 1954Phys. Rev.94 893–902
Buckman S J, Brunger M J, Newman D S, Snitchler G, Alston S, Norcross D W, Morrison M A, Saha B C,

Danby G and Trail W K 1990 Phys. Rev. Lett.65 3253–6
Chang E S and Fano U 1972Phys. Rev.A 6 173–85
Clementi E, Corongiu G and Chakravorty S 1990Modern Techniques in Computational Chemistry: MOTECC-90

ed E Clementi (Leiden: ESCOM) pp 343–434



Exchange in electron–molecule scattering: I 2287

Collins L A and Morrison M A 1982 Phys. Rev.A 25 1764–7
Collins L A, Robb W D and Morrison M A 1978 J. Phys. B: At. Mol. Phys.11 L777–81
—— 1980Phys. Rev.A 21 488–95
Collins L A and Schneider B I 1981 Phys. Rev.A 24 2387–401
Crompton R W and Morrison M A 1993 Aust. J Phys.46 203–29
Dunning T H and Hay P J 1977Methods of Electronic Structure Theoryed H F Schaefer III (New York: Plenum)

pp 1–27
Feldt A N and Morrison M A 1984 Phys. Rev.A 29 401–4
Gianturco F A, Rodrigues-Ruiz J A and Sanna N 1995J. Phys. B: At. Mol. Opt. Phys.28 1287–300
Gianturco F A and Stoecklin T 1994J. Phys. B: At. Mol. Opt. Phys.27 5903–21
Gibson T L and Morrison M A 1984 Phys. Rev.A 29 2497–508
Hara S 1967J. Phys. Soc. Japan22 710–8
Harrick N J and Ramsey N F 1952Phys. Rev.88 228–32
Jain A, Baluja K L, Di Martino V and Gianturco F A 1991Chem. Phys. Lett.183 34–9
Lane N F 1980Rev. Mod. Phys.52 29–119
Lovelace C 1964Phys. Rev.B 135 1225–49
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