Multiple-Scattering Methods in Casimir Calculations

K. A. Milton and J. Wagner

in collaboration with I. Cavero-Peláez, K. V. Shajesh, and P. Parashar arXiv:0711.0774, PRD 77, 045005 (2008); arXiv:0712.3811, JPA, in press
supported by NSF and DOE

Oklahoma Center for High Energy Physics, and
H. L. Dodge Department of Physics and Astronomy University of Oklahoma

Time-ordered list of papers

- M. G. Krein, Mat. Sb. (N.S.) 33, 597 (1953); Dokl. Akad. Nauk SSSR 144, 268 (1962) [Sov. Math.-Dokl. 3, 707 (1962)]; M. Sh. Birman and M. G. Krein, Dokl. Akad. Nauk SSSR 144, 475 (1962) [Sov. Math.-Dokl. 3, 740 (1962)]
- M. J. Renne, Physica 56, 125 (1971)
- R. Balian and B. Duplantier, Ann. Phys. (N.Y.) 104, 300 (1977); ibid. 112, 165 (1978); quant-ph/0408124.
- R. Büscher and T. Emig, PRL 94, 133901 (2005); T. Emig, R. L. Jaffe, M. Kardar, and A. Scardicchio, PRL 96, 080403 (2005)
- S. Reynaud, P. A. Maia Neto, and A. Lambrecht, arXiv:0719.5452; P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Europhys. Lett. 69, 924 (2005); PRA 72, 012115 (2005); A. Lambrecht, P. A. Maia Neto, and S. Reynaud, New J. Phys. 8, 243 (2006)
- A. Bulgac, P. Marierski, and A. Wirzba, PRD 73, 025007 (2006); A. Wirzba, A. Bulgac and P. Magierski, J. Phys. A 39, 6815 (2006) [arXiv:quant-ph/0511057]; A. Wirzba, arXiv:0711.2395
- D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, and R. Onofrio, PRA 74, 020101(R) (2006); New J. Phys. , 240 (2006)
- M. Bordag,PRD 73, 125018 (2006); PRD 75, 065003 (2007); M. Bordag and V. Nilolaev, arxiv:0802.3633
- Emig, Graham, Jaffe, and Kardar, PRL 99, 170403 (2007), arXiv:0707.1862; arXiv:0710.3084 PRD 77, 025005 (2008); arXiv:0710.5104; arXiv:0711.1987.
- Kenneth and Klich, arXiv:0707.4017 [quant-ph] (drafted earlier?)

Green's Function Approach

The multiple scattering approach starts from the well-known formula for the vacuum energy or Casimir energy (for simplicity here we restrict attention to a massless scalar field) (τ is the "infinite" time that the configuration exists) [Schwinger, 1975]

$$
E=\frac{i}{2 \tau} \operatorname{Tr} \ln G
$$

where G is the Green's function,

$$
\left(-\partial^{2}+V\right) G=1, \quad+\mathrm{BC}
$$

Ambiguity in formula

The above formula for the Casimir energy is defined up to an infinite constant, which can be at least partially compensated by inserting a factor as do Kenneth and Klich:

$$
E=\frac{i}{2 \tau} \operatorname{Tr} \ln G G_{0}^{-1}
$$

Here G_{0} satisfies, with the same boundary conditions as G, the free equation

$$
-\partial^{2} G_{0}=1
$$

T-matrix

Now we define the T-matrix,

$$
T=S-1=V\left(1+G_{0} V\right)^{-1}
$$

If the potential has two disjoint parts,

$$
V=V_{1}+V_{2}
$$

it is easy to show that

$$
T=\left(V_{1}+V_{2}\right)\left(1-G_{0} T_{1}\right)\left(1-G_{0} T_{1} G_{0} T_{2}\right)^{-1}\left(1-G_{0} T_{2}\right),
$$

where

$$
T_{i}=V_{i}\left(1+G_{0} V_{i}\right)^{-1}, \quad i=1,2
$$

Interaction in terms of T_{i} or G_{i}

Thus, we can write the general expression for the interaction between the two bodies (potentials) in two alternative forms:

$$
\begin{aligned}
E_{12} & =-\frac{i}{2 \tau} \operatorname{Tr} \ln \left(1-G_{0} T_{1} G_{0} T_{2}\right) \\
& =-\frac{i}{2 \tau} \operatorname{Tr} \ln \left(1-V_{1} G_{1} V_{2} G_{2}\right),
\end{aligned}
$$

where

$$
G_{i}=\left(1+G_{0} V_{i}\right)^{-1} G_{0}, \quad i=1,2
$$

Multipole expansion

To proceed to apply this method to general bodies, we use an even older technique, the multipole expansion. Let's illustrate this with a
$2+1$ dimensional version, which allows us to describe cylinders with parallel axes. We seek an expansion of the free Green's function

$$
\begin{aligned}
G_{0}\left(\mathbf{R}+\mathbf{r}^{\prime}-\mathbf{r}\right) & =\frac{e^{i|\omega|\left|\mathbf{r}-\mathbf{R}-\mathbf{r}^{\prime}\right|}}{4 \pi\left|\mathbf{r}-\mathbf{R}-\mathbf{r}^{\prime}\right|} \\
& =\int \frac{d k_{z}}{2 \pi} e^{i k_{z}\left(z-Z-z^{\prime}\right)} g_{0}\left(\mathbf{r}_{\perp}-\mathbf{R}_{\perp}-\mathbf{r}_{\perp}^{\prime}\right)
\end{aligned}
$$

Reduced Green's function

$$
g_{0}\left(\mathbf{r}_{\perp}-\mathbf{R}_{\perp}-\mathbf{r}_{\perp}^{\prime}\right)=\int \frac{\left(d^{2} k_{\perp}\right)}{(2 \pi)^{2}} \frac{e^{-i \mathbf{k}_{\perp} \cdot \mathbf{R}_{\perp}} e^{i \mathbf{k}_{\perp} \cdot\left(\mathbf{r}_{\perp}-\mathbf{r}_{\perp}^{\prime}\right)}}{k_{\perp}^{2}+k_{z}^{2}+\zeta^{2}}
$$

As long as the two potentials do not overlap, so that we have $\mathbf{r}_{\perp}-\mathbf{R}_{\perp}-\mathbf{r}_{\perp}^{\prime} \neq 0$, we can write an expansion in terms of modified Bessel functions:

$$
\begin{aligned}
g_{0}\left(\mathbf{r}_{\perp}-\mathbf{R}_{\perp}-\mathbf{r}_{\perp}^{\prime}\right)= & \sum_{m, m^{\prime}} \\
& I_{m}(\kappa r) e^{i m \phi} I_{m}^{\prime}\left(\kappa r^{\prime}\right) e^{-i m^{\prime} \phi^{\prime}} \\
& \times \tilde{g}_{m, m^{\prime}}^{0}(\kappa R), \quad \kappa^{2}=k_{z}^{2}+\zeta^{2} .
\end{aligned}
$$

Expression for $g_{m, m^{\prime}}^{0}$

By Fourier transforming, and using the definition of the Bessel function

$$
i^{m} J_{m}(k r)=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{-i m \phi} e^{i k r \cos \phi}
$$

we easily find

$$
\begin{aligned}
\tilde{g}_{m, m^{\prime}}^{0}(\kappa R) & =\frac{1}{2 \pi} \int \frac{d k k}{k^{2}+\kappa^{2}} J_{m-m^{\prime}}(k R) \frac{J_{m}(k r) J_{m}\left(k r^{\prime}\right)}{I_{m}(\kappa r) I_{m}\left(\kappa r^{\prime}\right)} \\
& =\frac{(-1)^{m^{\prime}}}{2 \pi} K_{m-m^{\prime}}(\kappa R) .
\end{aligned}
$$

Discrete matrix realization

Thus we can derive an expression for the interaction between two bodies, in terms of discrete matrices,

$$
\mathfrak{E} \equiv \frac{E_{\text {int }}}{L}=\frac{1}{8 \pi^{2}} \int d \zeta d k_{z} \ln \operatorname{det}\left(1-\tilde{g}^{0} \tilde{T}_{1} \tilde{g}^{0 \top} \tilde{T}_{2}\right),
$$

where the \tilde{T} matrix elements are given by

$$
\begin{aligned}
\tilde{T}_{m m^{\prime}}=\int d r & r d \phi \int d r^{\prime} r^{\prime} d \phi^{\prime} I_{m}(\kappa r) e^{-i m \phi} I_{m^{\prime}}\left(\kappa r^{\prime}\right) e^{i m^{\prime} \phi^{\prime}} \\
& \times T\left(r, \phi ; r^{\prime}, \phi^{\prime}\right) .
\end{aligned}
$$

Interaction between cylinders

Figure 1: Geometry of two cylinders (or two spheres) with radii a and b, respectively, and dis-

Semitransparent cylinders

Consider two parallel semitransparent cylinders, of radii a and b, respectively, lying outside each other, described by the potentials

$$
V_{1}=\lambda_{1} \delta(r-a), \quad V_{2}=\lambda_{2} \delta\left(r^{\prime}-b\right),
$$

with the separation between the centers R satisfying $R>a+b$. It is easy to work out the scattering matrix in this situation,

$$
\left(t_{1}\right)_{m m^{\prime}}=2 \pi \lambda_{1} a \delta_{m m^{\prime}} \frac{I_{m}^{2}(\kappa a)}{1+\lambda_{1} a I_{m}(\kappa a) K_{m}(\kappa a)} .
$$

Cylinder interaction

Thus the Casimir energy per unit length is

$$
\mathfrak{E}=\frac{1}{4 \pi} \int_{0}^{\infty} d \kappa \kappa \operatorname{tr} \ln (1-A)
$$

where $A=B(a) B(b)$, in terms of the matrices

$$
B_{m m^{\prime}}(a)=K_{m+m^{\prime}}(\kappa R) \frac{\lambda_{1} a I_{m^{\prime}}^{2}(\kappa a)}{1+\lambda_{1} a I_{m^{\prime}}(\kappa a) K_{m^{\prime}}(\kappa a)} .
$$

Weak-coupling

In weak coupling, the formula for the interaction

 energy between two cylinders is$$
\begin{aligned}
\mathfrak{E}=- & \frac{\lambda_{1} \lambda_{2} a b}{4 \pi R^{2}} \sum_{m, m^{\prime}=-\infty}^{\infty} \int_{0}^{\infty} d x x K_{m+m^{\prime}}^{2}(x) \\
& \times I_{m}^{2}(x a / R) I_{m^{\prime}}^{2}(x b / R) .
\end{aligned}
$$

Power series expansion

One merely exploits the small argument expansion for the modified Bessel functions $I_{m}(x a / R)$ and $I_{m^{\prime}}(x b / R)$:

$$
I_{m}^{2}(x)=\left(\frac{x}{2}\right)^{2|m|} \sum_{n=0}^{\infty} Z_{|m|, n}\left(\frac{x}{2}\right)^{2 n}
$$

where the coefficients $Z_{m, n}$ are

$$
Z_{m, n}=\frac{2^{2(m+n)} \Gamma\left(m+n+\frac{1}{2}\right)}{\sqrt{\pi} n!(2 m+n)!\Gamma(m+n+1)}
$$

Closed form result

In this case we get an amazingly simple result

$$
\mathfrak{E}=-\frac{\lambda_{1} a \lambda_{2} b}{4 \pi R^{2}} \frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{a}{R}\right)^{2 n} P_{n}(\mu),
$$

where $\mu=b / a$, and where by inspection we identify the binomial coefficients

$$
P_{n}(\mu)=\sum_{k=0}^{n}\binom{n}{k}^{2} \mu^{2 k} .
$$

Closed form result (cont.)

Remarkably, it is possible to perform the sums, so we obtain the following closed form for the interaction between two weakly-coupled cylinders:
$\mathfrak{E}=-\frac{\lambda_{1} a \lambda_{2} b}{8 \pi R^{2}}\left[\left(1-\left(\frac{a+b}{R}\right)^{2}\right)\left(1-\left(\frac{a-b}{R}\right)^{2}\right)\right]^{-1 / 2}$

PFA

We note that in the limit $R-a-b=d \rightarrow 0, d$ being the distance between the closest points on the two cylinders, we recover the proximity force theorem in this case

$$
U(d)=-\frac{\lambda_{1} \lambda_{2}}{32 \pi} \sqrt{\frac{2 a b}{R}} \frac{1}{d^{1 / 2}}, \quad d \ll a, b
$$

The rate of approach is given by

$$
\frac{\mathfrak{E}}{U} \approx 1-\frac{1+\mu+\mu^{2}}{4 \mu} \frac{d}{R} \approx 1-\frac{R^{2}-a R+a^{2}}{4 a(R-a)} \frac{d}{R} .
$$

$a=b$

Figure 2: Plotted is the ratio of the exact interaction energy of two weakly-coupled cylinders to the proximity force approximation

$b / a=99$

Figure 3: Plotted is the ratio of the exact interaction energy of two weakly-coupled cylinders to the proximity force approximation

Cylinder/plane interaction

By the method of images, we can find the interaction between semitransparent cylinder and a Dirichlet plane is

$$
\mathfrak{E}=\frac{1}{4 \pi} \int_{0}^{\infty} \kappa d \kappa \operatorname{tr} \ln (1-B(a))
$$

where $B(a)$ is given above. In the strong-coupling limit this result agrees with that given by Bordag, because
$\operatorname{tr} B^{s}=\operatorname{tr} \tilde{B}^{s}, \quad \tilde{B}_{m m^{\prime}}=\frac{1}{K_{m}(\kappa a)} K_{m+m^{\prime}}(\kappa R) I_{m^{\prime}}(\kappa a)$.

Exact cylinder/plane energy

In exactly the same way, we can obtain a closed-form result for the interaction energy between a Dirichlet plane and a weakly-coupled cylinder of radius a separated by a distance $R / 2$. The result is again quite simple:

$$
\mathfrak{E}=-\frac{\lambda a}{4 \pi R^{2}}\left[1-\left(\frac{2 a}{R}\right)^{2}\right]^{-3 / 2}
$$

In the limit as $d \rightarrow 0$, this agrees with the PFA:

$$
U(d)=-\frac{\lambda}{64 \pi} \frac{\sqrt{2 a}}{d^{3 / 2}}
$$

Comparison of PFA and exact

3-dimensional formalism

The three-dimensional formalism is very similar. In this case, the free Green's function has the representation

$$
\begin{aligned}
G_{0}\left(\mathbf{R}+\mathbf{r}^{\prime}-\mathbf{r}\right)= & \sum_{l m, l^{\prime} m^{\prime}} j_{l}(i|\zeta| r) j_{l^{\prime}}\left(i|\zeta| r^{\prime}\right) Y_{l m}^{*}(\hat{\mathbf{r}}) Y_{l^{\prime} m^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right) \\
& \times g_{l m, l^{\prime} m^{\prime}}(\mathbf{R})
\end{aligned}
$$

Reduced Green's function

The reduced Green's function can be written in the form

$$
\begin{gathered}
g_{l m, l^{\prime} m^{\prime}}^{0}(\mathbf{R})=(4 \pi)^{2} i^{l^{\prime}-l} \int \frac{(d \mathbf{k})}{(2 \pi)^{3}} \frac{e^{i \mathbf{k} \cdot \mathbf{R}}}{k^{2}+\zeta^{2}} \frac{j_{l}(k r) j_{l^{\prime}}\left(k r^{\prime}\right)}{j_{l}(i|\zeta| r) j_{l^{\prime}}\left(i|\zeta| r^{\prime}\right)} \\
\times Y_{l m}(\hat{\mathbf{k}}) Y_{l^{\prime} m^{\prime}}^{*}(\hat{\mathbf{k}}) .
\end{gathered}
$$

Now we use the plane-wave expansion once again, this time for $e^{i \mathbf{k} \cdot \mathbf{R}}$,

$$
e^{i \mathbf{k} \cdot \mathbf{R}}=4 \pi \sum_{l^{\prime \prime} m^{\prime \prime}} i^{l^{\prime \prime}} j_{l^{\prime \prime}}(k R) Y_{l^{\prime \prime} m^{\prime \prime}}(\hat{\mathbf{R}}) Y_{l^{\prime \prime} m^{\prime \prime}}^{*}(\hat{\mathbf{k}}),
$$

so now we encounter something new, an integral over three spherical harmonics,

$$
\int d \hat{\mathbf{k}} Y_{l m}(\hat{\mathbf{k}}) Y_{l^{\prime} m^{\prime}}^{*}(\hat{\mathbf{k}}) Y_{l^{\prime \prime} m^{\prime \prime}}^{*}(\hat{\mathbf{k}})=C_{l m, l^{\prime} m^{\prime}, l^{\prime \prime} m^{\prime \prime}}
$$

Wigner coefficients

where

$$
\begin{aligned}
C_{l m, l^{\prime} m^{\prime}, l^{\prime \prime} m^{\prime \prime}}= & (-1)^{m^{\prime}+m^{\prime \prime}} \sqrt{\frac{(2 l+1)\left(2 l^{\prime}+1\right)\left(2 l^{\prime \prime}+1\right)}{4 \pi}} \\
& \times\left(\begin{array}{lll}
l & l^{\prime} & l^{\prime \prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
m & m^{\prime} & m^{\prime \prime}
\end{array}\right) .
\end{aligned}
$$

The three-j symbols (Wigner coefficients) here vanish unless $l+l^{\prime}+l^{\prime \prime}$ is even.

Reduced Green's function

This fact is crucial, since because of it we can follow the previous method of writing $j_{l^{\prime \prime}}(k R)$ in terms of Hankel functions of the first and second kind, using the reflection property of the latter, $h_{l^{\prime \prime}}^{(2)}(k R)=(-1)^{l^{\prime \prime}} h_{l^{\prime \prime}}^{(1)}(-k R)$, and then extending the k integral over the entire real axis to a contour integral closed in the upper half plane.

$$
\begin{aligned}
g_{l m, l^{\prime} m^{\prime}}^{0}(\mathbf{R})=4 & \pi l^{l^{\prime}-l} \sqrt{\frac{2|\zeta|}{\pi R}} \sum_{l^{\prime \prime} m^{\prime \prime}} C_{l m, l^{\prime} m^{\prime}, l^{\prime \prime} m^{\prime \prime}} \\
& \times K_{l^{\prime \prime}+1 / 2}(|\zeta| R) Y_{l^{\prime \prime} m^{\prime \prime}}(\hat{\mathbf{R}})
\end{aligned}
$$

Casimir interaction of spheres

For the case of two semitransparent spheres that are totally outside each other,

$$
V_{1}(r)=\lambda_{1} \delta(r-a), \quad V_{2}\left(r^{\prime}\right)=\lambda_{2} \delta\left(r^{\prime}-b\right)
$$

in terms of spherical coordinates centered on each sphere, it is again very easy to calculate the scattering matrices,

$$
\begin{aligned}
T_{1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{\lambda_{1}}{a^{2}} & \delta(r-a) \delta\left(r^{\prime}-a\right) \\
& \times \sum_{l m} \frac{Y_{l m}(\hat{\mathbf{r}}) Y_{l m}^{*}\left(\hat{\mathbf{r}}^{\prime}\right)}{1+\lambda_{1} a K_{l+1 / 2}(|\zeta| a) I_{l+1}(|\zeta| a)},
\end{aligned}
$$

Scattering matrix element

and then the harmonic transform is very similar

 to that seen for the cylinder, $(k=i|\zeta|)$$$
\begin{aligned}
& \left(t_{1}\right)_{l m, l^{\prime} m^{\prime}}=\int(d \mathbf{r})\left(d \mathbf{r}^{\prime}\right) j_{l}(k r) Y_{l m}^{*}(\hat{\mathbf{r}}) j_{l^{\prime}}\left(k r^{\prime}\right) Y_{l^{\prime} m^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right) T_{1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right. \\
& =\delta_{l l^{\prime}} \delta_{m m^{\prime}}(-1)^{l} \frac{\lambda_{1} a \pi}{2|\zeta|} \frac{I_{l+1 / 2}^{2}(|\zeta| a)}{1+\lambda_{1} a K_{l+1 / 2}(|\zeta| a) I_{l+1 / 2}(|\zeta| a)}
\end{aligned}
$$

Interaction energy

Let us suppose that the two spheres lie along the z-axis, that is, $\mathrm{R}=R \hat{\mathbf{z}}$. Then we can simplify the expression for the energy somewhat by using $Y_{l m}(\theta=0)=\delta_{m 0} \sqrt{(2 l+1) / 4 \pi}$. The formula for the energy of interaction becomes

$$
E=\frac{1}{2 \pi} \int_{0}^{\infty} d \zeta \operatorname{tr} \ln (1-A)
$$

where the matrix

$$
A_{l m, l^{\prime} m^{\prime}}=\delta_{m, m^{\prime}} \sum_{l^{\prime \prime}} B_{l l^{\prime \prime} m}(a) B_{l^{\prime \prime} l^{\prime} m}(b)
$$

$$
\begin{aligned}
& B_{l l^{\prime} m}(a)=\frac{\sqrt{\pi}}{\sqrt{2 \zeta R}} i^{-l+l^{\prime}} \sqrt{(2 l+1)\left(2 l^{\prime}+1\right)} \sum_{l^{\prime \prime}}\left(2 l^{\prime \prime}+1\right) \\
& \times\left(\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
m & -m & 0
\end{array}\right) \frac{K_{l^{\prime \prime}+1 / 2}(\zeta R) \lambda_{1} a I_{l^{\prime}+1 / 2}^{2}(\zeta a)}{1+\lambda_{1} a I_{l^{\prime}+1 / 2}(\zeta a) K_{l^{\prime}+1 / 2}(\zeta a)}
\end{aligned}
$$

Note that the phase always cancels in the trace.

Weak coupling

For weak coupling, a major simplification results because of the orthogonality property,

$$
\begin{aligned}
& \sum_{m=-l}^{l}\left(\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
m & -m & 0
\end{array}\right)\left(\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime \prime} \\
m & -m & 0
\end{array}\right)=\delta_{l^{\prime \prime} l^{\prime \prime \prime}} \frac{1}{2 l^{\prime \prime}+1}, l \leq l^{\prime} . \\
& E=-\frac{\lambda_{1} a \lambda_{2} b}{4 R} \int_{0}^{\infty} \frac{d x}{x} \sum_{l l^{\prime} l^{\prime \prime}}(2 l+1)\left(2 l^{\prime}+1\right)\left(2 l^{\prime \prime}+1\right) \\
& \times\left(\begin{array}{lll}
l & l^{\prime} & l^{\prime \prime} \\
0 & 0 & 0
\end{array}\right)^{2} K_{l^{\prime \prime}+1 / 2}^{2}(x) I_{l+1 / 2}^{2}(x a / R) I_{l^{\prime}+1 / 2}^{2}(x b / R) .
\end{aligned}
$$

Power series expansion

As with the cylinders, we expand the modified Bessel functions of the first kind in power series in $a / R, b / R<1$. This expansion yields the infinite series
$E=-\frac{\lambda_{1} a \lambda_{2} b}{4 \pi R} \frac{a b}{R^{2}} \sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{m=0}^{n} D_{n, m}\left(\frac{a}{R}\right)^{2(n-m)}\left(\frac{b}{R}\right)^{2 m}$
where by inspection of the first several $D_{n, m}$ coefficients we can identify them as

$$
D_{n, m}=\frac{1}{2}\binom{2 n+2}{2 m+1}
$$

Closed form

and now we can immediately sum the expression for the Casimir interaction energy to give the closed form

$$
E=\frac{\lambda_{1} a \lambda_{2} b}{16 \pi R} \ln \left(\frac{1-\left(\frac{a+b}{R}\right)^{2}}{1-\left(\frac{a-b}{R}\right)^{2}}\right) .
$$

PFA

Again, when $d=R-a-b \ll a, b$, the proximity force theorem is reproduced:

$$
U(d) \sim \frac{\lambda_{1} \lambda_{2} a b}{16 \pi R} \ln (d / R), \quad d \ll a, b
$$

However, as the figures demonstrate, the approach is not very smooth, even for equal-sized spheres. The ratio of the energy to the PFA is $(b / a=\mu)$

$$
\frac{E}{U}=1+\frac{\ln \left[(1+\mu)^{2} / 2 \mu\right]}{\ln d / R}, \quad d \ll a, b .
$$

$a=b$; truncation at 100 shown

Figure 4: Plotted is the ratio of the exact interaction energy of two weakly-coupled spheres to the proximity force approximation

Figure 5: Plotted is the ratio of the exact interaction energy of two weakly-coupled spheres to the proximity force approximation

Exact plane/sphere energy

In just the way indicated above, we can obtain a closed-form result for the interaction energy between a weakly-coupled sphere and a Dirichlet plane. Using the simplification that

$$
\sum_{m=-l}^{l}(-1)^{m}\left(\begin{array}{ccc}
l & l & l^{\prime} \\
m & -m & 0
\end{array}\right)\left(\begin{array}{lll}
l & l & l^{\prime} \\
0 & 0 & 0
\end{array}\right)=\delta_{l^{\prime} 0}
$$

we can write the interaction energy in the form

$$
E=-\frac{\lambda a}{2 \pi R} \int_{0}^{\infty} d x \sum_{l=0}^{\infty} \sqrt{\frac{\pi}{2 x}}(2 l+1) K_{1 / 2}(x) I_{l+1 / 2}^{2}\left(x \frac{a}{R}\right)
$$

Then in terms of $R / 2$ as the distance between the center of the sphere and the plane, the exact interaction energy is

$$
E=-\frac{\lambda}{2 \pi}\left(\frac{a}{R}\right)^{2} \frac{1}{1-(2 a / R)^{2}}
$$

which as $a \rightarrow R / 2$ reproduces the proximity force limit, contained in the (ambiguously defined) PFA formula

$$
U=-\frac{\lambda}{8 \pi} \frac{a}{d}
$$

Exact energy vs. PFA

Figure 6: Plotted is the ratio of the exact interaction energy of a weakly-coupled sphere above a Dirichlet plane to the PFA.

Comments and Prognosis

- The methods proposed are in fact not particularly novel, and illustrate the ability of physicists to continually rediscover old methods.
- What is new is the ability, partly due to enhancement in computing power and flexibility, to evaluate continuum determinants (or infinitely dimensional discrete ones) accurately numerically.
- This will make it possible to compute Casimir forces for geometries previously inaccessible.

New results

- It is indeed remarkable, if perhaps not surprising in retrospect, to see that closed form expressions can be obtained for the interaction between spheres and between parallel cylinders in weak coupling.
- These results demonstrate most conclusively the unreliability of the proximity force approximation (of course, the proximity force theorem holds true).
- Further applications of our method will be given in the talks by Shajesh and Prachi. (See also Jef's talk.)

