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Introduction

Recently a non-contact rack and pinion arrangement has been proposed by
Ashourvan etal.[1]. We generalize this proposal to the design of a
non-contact gear consisting of two corrugated concentric cylinders. We
derive an analytic expression for the torque on the cylinders in this
arrangement for the case when mean of the corrugation amplitudes are
small compared to difference between the mean radii of individual
cylinders.
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Corrugated cylinders: Casimir torque

1 We consider two concentric, semi-transparent, corrugated cylinders
described by the potentials,

Vi(r , θ) = λi δ(r − ai − hi (θ)), (1)

where i = 1, 2 and we shall have a = a2 − a1 > 0.
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1 We consider two concentric, semi-transparent, corrugated cylinders
described by the potentials,

Vi(r , θ) = λi δ(r − ai − hi (θ)), (1)

where i = 1, 2 and we shall have a = a2 − a1 > 0.
2 Question we ask is: If we rotate the inner cylinder,what will be the

torque experienced by the outer cylinder due to the motion of the
inner cylinder?

3 This is described by an angular translation of the corrugations on the
inner cylinder as, h1(θ + θ0(t)), with the initial condition, θ0(0) = 0.

4 We confine to simple static situation θ0(t) → θ0.
5 The torque on the cylinders for this case will be

τ = −
∂E

∂θ0
, (2)

where E is the total Casimir energy associated with the concentric
cylinders.
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Corrugated cylinders

1 There will be no torque between the cylinders if the corrugations are
switched off by setting hi (θ) = 0, i = 1 and 2.

2 We fix this situtation as our background. Denote quantities
associated with it by superscript (0).
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Corrugated cylinders

1 There will be no torque between the cylinders if the corrugations are
switched off by setting hi (θ) = 0, i = 1 and 2.

2 We fix this situtation as our background. Denote quantities
associated with it by superscript (0).

3 Thus the potential for the background is

V
(0)
i

(r) = λi δ(r − ai ), (3)

which has no angular dependence.
4 The total Casimir energy associated with the background due to the

two uncorrugated cylinders will be denoted as E (0), which will include
the divergent contributions associated with the single cylinders.

5

τ (0) = −
∂E (0)

∂θ0
= 0, (4)

which means that this configuration does not contribute to the
Casimir torque.
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Corrugated cylinders

1 We can write total Casimir energy for corrugated cylinders as

∆E = E − E (0) = E1 + E2 + E12 (5)

where Ei is energy contribution due to one corrugated cylinder only.
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where Ei is energy contribution due to one corrugated cylinder only.

2 There will be no torque between the cylinders if either one of the
cylinders have their corrugations switched off by setting hi(θ) = 0,
i = 1 or 2 because they will be independent of θ0 due to the
symmetry in one of the cylinders.
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Corrugated cylinders

1 We can write total Casimir energy for corrugated cylinders as

∆E = E − E (0) = E1 + E2 + E12 (5)

where Ei is energy contribution due to one corrugated cylinder only.

2 There will be no torque between the cylinders if either one of the
cylinders have their corrugations switched off by setting hi(θ) = 0,
i = 1 or 2 because they will be independent of θ0 due to the
symmetry in one of the cylinders.

3 E12 is the contribution to the total energy due to the interaction
between the corrugations in the cylinders. Only this part of the
energy contributes to the Casimir torque. Thus,

τ =
∂

∂θ0
∆E = −

∂E12

∂θ0
(6)
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Casimir energy

1 Casimir energy can be obtained using

∆E = E − E (0) =
i

2T
Tr lnGG (0)−1

, (7)

where, T is the infinite time associated with the system.
2 The Green’s function G satisfies the differential equation, which can

be written in the matrix notation as,

(−∂2 + V1 + V2)G = 1, (8)

3 Corresponding Green’s function associated with the background
satisfies the differential equation,

(−∂2 + V
(0)
1 + V

(0)
2 )G (0) = 1. (9)

4 Using above equations we can obtain interaction energy term as

∆E12 = −
i

2T
Tr ln

[

1 − G1∆V1G2∆V2

]

. (10)
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Perturbative evaluation of ∆E12

1 Let us define the function

a(θ) = a2 − a1 + h2(θ) − h1(θ) (11)

which measures the relative corrugations between the two cylinders.
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Perturbative evaluation of ∆E12

1 Let us define the function

a(θ) = a2 − a1 + h2(θ) − h1(θ) (11)

which measures the relative corrugations between the two cylinders.
2 When the corrugations can be treated as small pertubations,

|hi(θ)| ≪ a < ai , we can approximate the potentials as

∆Vi(r , θ) = V
(1)
i

(r , θ) + O(h)2, (12)

where

V
(1)
i

(r , θ) = −hi(θ)
∂

∂r
V

(0)
i

(r), (13)
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which measures the relative corrugations between the two cylinders.
2 When the corrugations can be treated as small pertubations,

|hi(θ)| ≪ a < ai , we can approximate the potentials as

∆Vi(r , θ) = V
(1)
i

(r , θ) + O(h)2, (12)

where

V
(1)
i

(r , θ) = −hi(θ)
∂

∂r
V

(0)
i

(r), (13)

3 Thus, to the leading order the interaction energy of the corrugations
takes the form

∆E12 =
i

2T
Tr

[

G (0)∆V
(1)
1 G (0)∆V

(1)
2

]

+ O(h)3. (14)
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Evaluation of ∆E12

1 Evaluation of ∆E12 to the leading order involves solving for the
Green’s function for the configuration involving the background alone,
which is given by

G (0)(x , x ′) =

∫

dω

2π
e−iω(t−t

′)

∫

dk

2π
e ik(z−z

′)

+∞
∑

m=−∞

1

2π
e im(θ−θ′) g

(0)
m (r , r ′;κ), (15)
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Green’s function for the configuration involving the background alone,
which is given by

G (0)(x , x ′) =

∫

dω

2π
e−iω(t−t

′)

∫

dk

2π
e ik(z−z

′)

+∞
∑

m=−∞

1

2π
e im(θ−θ′) g

(0)
m (r , r ′;κ), (15)

2 Reduced Green’s function g
(0)
m (r , r ′;κ), satisfies the equation

−

[

1

r

∂

∂r
r

∂

∂r
−

m2

r2
− κ2 − λ1δ(r − a1) − λ2δ(r − a2)

]

g
(0)
m (r , r ′;κ)

=
δ(r − r ′)

r
.(16)

which can be solved explicitly in terms of Bessel functions.
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Evaluation of ∆E12

1 Interaction energy in terms of reduced Green’s function is

∆E12

Lz

=
1

(2π)2

+∞
∑

m=−∞

+∞
∑

m′=−∞

(h̃1)m−m′(h̃2)m′
−mLmm′ , (17)

where, (h̃i )m are the Fourier transforms of the functions hi(θ)

(h̃i )m =

∫ 2π

0
dθ e−imθ hi (θ) (18)
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=
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(2π)2

+∞
∑

m=−∞

+∞
∑

m′=−∞

(h̃1)m−m′(h̃2)m′
−mLmm′ , (17)

where, (h̃i )m are the Fourier transforms of the functions hi(θ)

(h̃i )m =

∫ 2π

0
dθ e−imθ hi (θ) (18)

2 The kernel Lmm′ is given in terms of the reduced Green’s function as

Lmm′ = −
λ1λ2

4π

∫

∞

0
κ dκ

[

∂

∂r

∂

∂ r̄
r r̄ g

(0)
m (r , r̄ ;κ) g

(0)
m′ (r̄ , r ;κ)

]

r̄=a1,r=a2

.

(19)
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2 The kernel Lmm′ is given in terms of the reduced Green’s function as

Lmm′ = −
λ1λ2

4π

∫

∞

0
κ dκ

[

∂

∂r

∂

∂ r̄
r r̄ g

(0)
m (r , r̄ ;κ) g

(0)
m′ (r̄ , r ;κ)

]

r̄=a1,r=a2

.

(19)

3 Note that
Lmm′ = Lm′m (20)
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Evaluation of Lmm′

Evaluation of Lmm′ involves derivatives of green’s functions on the cylinder
boundaries, which are discontinous.
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Evaluation of Lmm′: Dirichlet limit

For the case of Dirichlet limit (λ1,2 → ∞) we get the relatively simple
expression to be

Lmm′ =
1

4π

1

a1a2

∫

∞

0
κ dκ

1

wm(a1, a2;κ)

1

wm′(a1, a2;κ)
, (21)

where
wm(a1, a2;κ) = Im(κa1)Km(κa2) − Im(κa2)Km(κa1). (22)
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Sinusoidal corrugations

For the case of sinusoidal corrugations we have

h1(θ) = h1 sin[ν1(θ + θ0)]

h2(θ) = h2 sin[ν2θ]
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Sinusoidal corrugations

For the case of sinusoidal corrugations we have

h1(θ) = h1 sin[ν1(θ + θ0)]

h2(θ) = h2 sin[ν2θ]

We can evaluate the Fourier transforms (h̃i )

h̃1,m = h1
2π

2i

[

e iν1θ0δm,ν1 − e−iν1θ0δm,−ν1

]

h̃2,m = h2
2π

2i

[

δm,ν2 − δm,−ν1

]
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Casimir torque: Dirichlet limit

We can write Casimir energy as

∆E12

Lz

= δν1,ν2 A(a1, a2, ν)
h1h2

a4
cos νθ0, (24)

where ν = ν1 = ν2 and

A(a1, a2, ν) =
1

8π

a4

a1a2

+∞
∑

m=−∞

∫

∞

0
κ dκ

1

wm(a1, a2;κ)

1

wm+ν(a1, a2;κ)
.

(25)
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Lz

= δν1,ν2 A(a1, a2, ν)
h1h2

a4
cos νθ0, (24)

where ν = ν1 = ν2 and

A(a1, a2, ν) =
1

8π

a4

a1a2

+∞
∑

m=−∞

∫

∞

0
κ dκ

1

wm(a1, a2;κ)

1

wm+ν(a1, a2;κ)
.

(25)
Using above results we get the expression for the torque per unit length on
the cylinders to be

τ

Lz

= δν1,ν2 ν A(a1, a2, ν)
h1h2

a4
sin νθ0. (26)

() Casimir torque: II March 15, 2008 13 / 15



To do: in cylinders

1 Plots!

2 Complete the calculation using uniform asymptotic approximation get
the result for parallel plates. This seems straight forward to do.

3 Evaluate force in the PFA as done for parallel plates.

4 Higher order calculation.
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