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Abstract

We apply an analytic description to the inclusive decay of the τ lepton. We

argue that this method gives not only a self-consistent description of the pro-

cess both in the timelike region by using the initial expression for Rτ and in

the spacelike domain by using the analytic properties of the hadronic corre-

lator, but also leads to the fact that theoretical uncertainties associated with

unknown higher-loop contributions and renormalization scheme dependence

can be reduced dramatically.

I. INTRODUCTION

The ratio of hadronic to leptonic widths for the inclusive decay of the τ -lepton, Rτ =
Γ(τ− → hadrons ντ )/Γ(τ− → ` ν̄` ντ ), gives important information about the QCD running
coupling at relatively small energy scales. The theoretical analysis of the hadronic decay
of a heavy lepton was performed in [1] before the experimental discovery of the τ -lepton
in 1975. Since then, the properties of the τ have been studied very intensively. Numerous
publications are devoted to the QCD description of the inclusive decay of the τ -lepton and
determination of the QCD running coupling αs at the τ mass scale. A detailed consideration
of this subject has been given in [2]. Recently, an updated QCD analysis has been performed
by the ALEPH [3] and OPAL [4] collaborations, where applications of different theoretical
approaches to the τ -decay have been analyzed.

At present, the Rτ -ratio is known experimentally to high accuracy, ∼ 0.5%. Never-
theless, the value of αs extracted from the data has a rather large error, in which the-
oretical uncertainties are dominant. For example, the ALEPH Collaboration result is
αs(Mτ = 1.777 GeV) = 0.334 ± 0.007expt ± 0.021theor [3]. It should be emphasized that

∗e-mail: milton@mail.nhn.ou.edu

†e-mail: solovtso@thsun1.jinr.ru

1



nonperturbative terms, the values of which are not well known, do not dominate these un-
certainties, because their contribution is rather small [2–4]. The main difficulty is associated
with the perturbative description.

The original theoretical expression for the width Γ(τ− → hadrons ντ ) involves integra-
tion over small values of timelike momentum [1]. The perturbative description with the
standard running coupling, which has unphysical singularities, becomes ill-defined in this
region and some additional ansatz has to be applied to get a finite result for the hadronic
width. To this end, one usually transforms to a contour representation for Rτ [5], which
allows one to give meaning to the initial expression and, in principle, perform calculations in
the framework of perturbative QCD. Assuming the validity of this transformation it is pos-
sible to present results in the form of a truncated power series with αs(Mτ ) as the expansion
parameter [6,2]. There are also other approaches to evaluating the contour integral. The
Le Diberder and Pich prescription [7] allows one to improve the convergence properties of the
approximate series and reduce the renormalization scheme (RS) dependence of theoretical
predictions. The possibility of using different approaches in the perturbative description of
τ -decay leads to an uncertainty in the value of αs(Mτ ) extracted from the same experimental
data. Moreover, any perturbative description is based on this contour representation, i.e.,
on the possibility of converting the initial expression involving integration over timelike mo-
menta into a contour integral in the complex momentum plane. To carry out this transition
by using Cauchy’s theorem requires certain analytic properties of the hadronic correlator
or of the corresponding Adler function. However, the required analytic properties are not
automatically maintained in perturbative QCD resummed by the renormalization group.
It is well known that at the one-loop level the so-called ghost pole occurs in the invariant
charge. Higher-loop corrections do not solve this problem, but merely add some unphysical
branch points. The occurrence of incorrect analytic properties in the conventional pertur-
bative approximation makes it impossible to exploit Cauchy’s theorem in this manner and
therefore prevents rewriting the initial expression for Rτ in the form of a contour integral in
the complex momentum-plane.

In this paper we will use the analytic approach proposed in [8] (see also [9] for de-
tails). Being inspired by Källén–Lehmann analyticity, which is based on general principles
of quantum field theory, this method ensures that the running coupling possesses the correct
analytic properties, leads to a self-consistent definition of the effective charge in the time-
like region [10,11] (which cannot be a symmetrical reflection of the spacelike one [12]), and
provides equality between the initial Rτ -expression and the corresponding contour represen-
tation [13]. A distinguishing feature of the analytic approach is the existence of a universal
infrared limiting value of the analytic running coupling at q2 = 0 which is independent of
both the QCD scale parameter Λ and the choice of renormalization scheme. This limiting
value is defined by the general structure of the Lagrangian and turns out to be stable with
respect to higher-loop corrections in contrast to the corresponding quantity in conventional
perturbation theory (PT). The higher-loop stability of the analytic perturbation theory
(APT) holds also for physical observables [13–16].

However, it is not sufficient to study the stability with respect to higher-loop corrections;
one must also investigate the stability with respect to choice of renormalization scheme. This
is also essential in order to estimate the uncertainty of the results obtained. The theoretical
ambiguity which is connected with higher-loop corrections and with RS dependence becomes
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considerable at low energy scales (see, e.g., [17]). The APT method, as an invariant analyt-
ical version of perturbative QCD [18], improves the situation and gives very stable results
over a wide range of renormalization schemes. This has been demonstrated for the e+e−

annihilation ratio [14] and for the Bjorken [15] and Gross–Llewellyn Smith [16] deep inelastic
scattering sum rules.

The main aim of the paper is a study of the RS dependence which appears in the
description of the inclusive τ decay within the APT approach. We will consider the Rτ -
ratio at the next-to-next-to-leading order (NNLO) and the next-to-leading order (NLO) and
compare results obtained with those of standard perturbation theory.

II. QCD PARAMETRIZATION OF Rτ

The ratio of hadronic to leptonic τ -decay widths can be written as

Rτ = 3 SEW(|Vud|
2 + |Vus|

2)(1 + δQCD), (1)

where SEW = 1.0194 ± 0.0040 [19] is the electroweak factor, |Vud| = 0.9752 ± 0.0007 and
|Vus| = 0.2218± 0.0016 [20] are the CKM matrix elements, and δQCD is the QCD correction
(see [2] for details).

We first introduce some definitions: Im Π ∼ 1 + r for the hadronic correlator Π(q2) and
D ∼ 1 + d for the Adler function D(q2). Then for massless quarks one can write δQCD as an
integral over timelike momentum s:

δQCD = 2
∫ M2

τ

0

ds

M2
τ

(

1−
s

M2
τ

)2 (

1 + 2
s

M2
τ

)

r(s). (2)

Within the conventional perturbative approximation of r(s) this integral is ill-defined due
to unphysical singularities of the running coupling lying in the range of integration. The
most useful trick to rescue the situation is to appeal to analytic properties of the hadronic
correlator Π(q2). This opens up the possibility of exploiting Cauchy’s theorem by rewriting
the integral in the form of a contour integral in the complex q2-plane with the contour being
a circle of radius M2

τ :

δQCD =
1

2πi

∮

|z|=M2
τ

dz

z

(

1−
z

M2
τ

)3 (

1 +
z

M2
τ

)

d(z). (3)

Starting from the contour representation (3) the PT description can be developed in the
following two ways (see, e.g., [21]). One is Braaten’s approach [6] in which the quantity (3)
is represented in the form of truncated power series with the expansion parameter αs(M

2
τ ).

The NNLO representation for δQCD is written as follows

δBr
QCD = aτ + r1 a2

τ + r2 a3
τ , (4)

where aτ ≡ αs(M
2
τ )/π. The coefficients r1 and r2 in the MS scheme with three active flavors

are r1 = 5.2023 and r2 = 26.366 [2,22]. The running coupling satisfies the renormalization
group equation:

3



µ2 da

dµ2
= −

b

2
a2(1 + c1a + c2a

2) , (5)

where b, c1 and c2 are the β-function coefficients. For three active flavors b = 9/2, c1 = 16/9

and cMS
2 = 3863/864.

In the approach of Le Diberder and Pich (LP) [7], the PT expansion is applied to the
d-function1

d(q2) = a(q2) + d1a
2(q2) + d2a

3(q2) , (6)

where in the MS-scheme dMS
1 = 1.6398 and dMS

2 = 6.3710 [22] for three active quarks.
Substituting Eq. (6) into Eq. (3) leads to the following expansion, which is not a power
series in a,

δLP
QCD = A(1)(a) + d1 A(2)(a) + d2 A(3)(a) (7)

with

A(n)(a) =
1

2πi

∮

|z|=M2
τ

dz

z

(

1−
z

M2
τ

)3 (

1 +
z

M2
τ

)

an(z) . (8)

As noted above, transition to the contour representation (3) requires certain analytic
properties of the correlator, namely, that it must be an analytic function in the complex
q2-plane with a cut along the positive real axis. The correlator parametrized by the PT run-
ning coupling does not have this virtue [23,13]. Moreover, the conventional renormalization
group method determines the running coupling in the spacelike region, whereas the initial
expression (2) for Rτ contains an integration over timelike momentum. Thus, we are in
need of some method of continuing the running coupling from the spacelike to the timelike
region that takes into account the proper analytic properties of the running coupling [11].
Because of this failure of analyticity, Eqs. (2) and (3) are not equivalent in the framework
of PT [13] and if one remains within PT, nothing can be said about the errors introduced
by this transition.

The analytic approach may eliminate these problems. To make our analysis more trans-
parent and to demonstrate clearly the differences between the consequences of the PT and
APT methods, we restrict our consideration here to massless NNLO. The NNLO analysis
can be performed in a more rigorous way without model assumptions that allows us to avoid
minor details and exhibit the principal features of the APT approach. Thus, other effects,
such as nonperturbative terms, higher-loop corrections, and renormalon contributions lie
outside of the purpose of this paper. Note, however, that the NNLO approximation is ade-
quate to describe the actual physical situation because numerically the corresponding terms
give the principal contribution to the Rτ -ratio.

1We use the definition q2 < 0 in the Euclidean region. We have made a few changes in notation

from that given in [13]: now a = αs/π, and consequently d1 and d2 are what we called d2 and d3

previously.
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The function d(q2), which is analytic in the cut q2-plane, can be expressed in terms of
the effective spectral function ρ(σ), the basic quantity in the APT method,

d(q2) =
1

π

∫ ∞

0

dσ

σ − q2
ρ(σ) . (9)

The connection between the QCD corrections to the D- and R-functions can be written
down in the form of the dispersion integral

d(q2) = −q2
∫ ∞

0

ds

(s− q2)2 r(s) , (10)

which is inverted by the following formula [24]

r(s) = −
1

2πi

∫ s+iε

s−iε

dz

z
d(z) . (11)

Here, the contour lies in the region of analyticity of the D-function. In terms of ρ(σ) the
function r(s) defined for timelike momenta can be expressed as follows [10]:

r(s) =
1

π

∫ ∞

s

dσ

σ
ρ(σ) . (12)

Eqs. (9) and (12) determine the QCD corrections d(q2), which is defined in the Euclidean
(spacelike) region of momenta, and r(s) defined for the Minkowskian (timelike) argument,
in terms of the spectral function ρ(σ). For δQCD, using Eq. (2) or equivalently Eq. (3), in
terms of ρ(σ), we find2

δan =
1

π

∫ ∞

0

dσ

σ
ρ(σ)−

1

π

∫ M2
τ

0

dσ

σ

(

1−
σ

M2
τ

)3 (

1 +
σ

M2
τ

)

ρ(σ) . (13)

In the APT approach, the spectral function is defined as the imaginary part of the
perturbative approximation to dpt(q

2) on the physical cut:

ρ(σ) = %0(σ) + d1%1(σ) + d2%2(σ), (14)

where

%n(σ) = Im[an+1(σ + iε)] . (15)

Substituting Eq. (14) into Eq. (13), we can rewrite δan in the form of the APT expansion

δan = δ(0) + d1 δ(1) + d2 δ(2) . (16)

Note that the APT representations of the d-function and the QCD correction δQCD are not
in the form of power series.

2To distinguish APT and PT cases, we will use subscripts “an” and “pt”.

5



The function %0(σ) in Eq. (14) defines the analytic spacelike running coupling

aan(q
2) =

1

π

∫ ∞

0

dσ

σ − q2
%0(σ). (17)

In the one-loop approximation it leads to [8]

aan(q
2) = apt(q

2) +
2

b

Λ2

Λ2 + q2
. (18)

Unlike the one-loop PT running coupling, apt(q
2) = 2/b ln (−q2/Λ2) , the analytic running

coupling (18) has no unphysical ghost pole and, therefore, possesses the correct analytic
properties, arising from Källén-Lehmann analyticity that reflects the general principles of
the theory. The nonperturbative (non-logarithmic) term, which appears in the analytic
running coupling, does not change the ultraviolet limit of the theory and thus the APT and
the PT approaches coincide with each other in the asymptotic region of high energies.

Thus, the APT approach provides a self-consistent description of the hadronic τ decay.
This description can be equivalently phrased either on the basis of the original expression
(2), which involves the Minkowskian quantity r(s), or on the contour representation (3),
which involves the Euclidean quantity d(q2).

An important feature of the APT approach is the fact that dan(q
2) and aan(q

2) have a
universal limit at the point q2 = 0. This limiting value, generally, is independent of both
the scale parameter Λ and the order of the loop expansion being considered. Because dan(0)
and aan(0) are equal to the reciprocal of the first coefficient of the QCD β-function, they
are also RS invariant (we consider only gauge- and mass-independent RSs). The existence
of this fixed point plays a decisive role in the improved convergence properties relative to
PT and in the very weak RS dependence of our results.

To find the analytic function d(q2) involved in Eq. (3), we solve the transcendental
equation for the running coupling

b

2
ln

(

−q2

Λ2
MS

)

− iπ
b

2
= dMS

1 − d1 +
1

a
+ c1 ln

(

b

2c1

)

+ F (l)(a), (19)

where at the NLO

F (2)(a) = c1 ln
(

c1a

1 + c1a

)

, (20)

and at the NNLO

F (3)(a) = F (2)(a) + c2

∫ a

0

dx

(1 + c1x)(1 + c1x + c2x2)
, (21)

on the physical cut lying along the positive real axis in the complex q2-plane and then use
Eqs. (14), (15) and (9). Eq. (19) holds in any MS-like renormalization scheme and allows
us to normalize the results obtained by using the scale parameter ΛMS. Having found ΛMS,
we can study how δan varies with a change of renormalization scheme. To do that one has
to select parameters which determine the RS. The function d(q2) in Eq. (3) is parametrized
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by a set of RS-dependent parameters. There are RS invariant combinations which constrain
these parameters [27]. At the NNLO there are two RS-invariant quantities; the first of them
expresses an energy dependence, the second is just a number

ω2 = c2 + d2 − c1d1 − d1
2 , (22)

which in our case equals 5.2378. Here, c1 is RS invariant and we can choose d1 and c2 as
independent variables, which define some RS.

There are no fundamental principles upon which one can choose one or another preferable
RS. Nevertheless, a natural way of studying the RS dependence is to supplement results in a
certain scheme with an estimate of the variability of the predictions over a range of a priori

acceptable schemes specified by some criterion. In [28] it was proposed to consider the class
of ‘natural’ RSs, which obey the condition

|c2|+ |d2|+ c1|d1|+ d1
2 ≤ C|ω2| . (23)

This inequality is called the “cancellation index criterion” which means that the degree of
cancellation in the second RS invariant (22) should not be too large. To define a boundary
of ‘acceptable’ schemes which is defined by the value of the cancellation index C, we will
require no more cancellation than that which occurs in the scheme obeying the principle of
minimal sensitivity (PMS) [29], which leads to C ' 2.

III. APT: CONVERGENCE PROPERTIES AND RS DEPENDENCE

For various physical quantities, the APT approach allows one to construct a series that
has improved convergence properties as compared to a perturbative expansion. To demon-
strate this fact for the hadronic τ -decay, we compare the convergence properties of the
PT expansions (4) and (7) on the one hand, and the APT approach given by Eq. (16)
on the other hand. For our calculation we take as input the TAU’98 conference value:
Rτ = 3.642± 0.019 [25], which is consistent with the PDG’98 fit Rτ = 3.642± 0.024 [20]. In
Table I we present NNLO results obtained by the methods mentioned above for the central
experimental value in the MS scheme. The relative contributions of higher-order terms de-
pends on the method which is applied. The convergence properties of the APT expansion
seem to be much improved compared to those of the PT expansions.

The values of the scale parameter ΛMS and the coupling αs(M
2
τ ) obtained from above PT

and APT expansions are noticeably different from each other. The corresponding numerical
estimations are given in Table II, in which, in order to clarify the situation concerning
higher-loop stability of different expansions, we also present the NLO result. This table
demonstrates that the theoretical ambiguity, which associated with different versions of the
perturbative description, leads to a rather large uncertainty, αNNLO

PT (Br) − αNNLO
PT (LP) = 0.012.

At the same time the experimental error is ∆αexpt = 0.007–0.009 [3,4]. The distinction
between NLO and NLLO running coupling values is 12% for PT (Br) and 5% for PT (LP)
approaches, while for the APT approach it is less than 0.5%.

The non-logarithmic terms, which ensure the correct analytic properties and allow a self-
consistent description of τ decay, turn out to be very important for the numerical analysis
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and influence in an essential way the value of Λ parameter extracted from the data. Indeed,
at the one-loop level one can write a simple relation: δan(Λ) ' δLP

pt (Λ)− (2/b)Λ2/M2
τ . The

second term, which is ‘invisible’ in the perturbative expansion, turns out to be numerically
important [26] (see the detailed discussion in [11]). Note also that there is a difference
between the shapes of the analytic and perturbative running couplings, for example, αan(Λ =
907 MeV) = 0.403, while at the same scale, the value of the perturbative coupling much
larger, αpt(Λ = 907 MeV) = 0.796. Here the question may arise, how is the large APT
value of Λ consistent with high energy experimental data? We have estimated the ratio of
hadronic to leptonic Z-decay widths, RZ, using the above value of Λan and the matching
procedure proposed in [11]. We obtained the value RZ = 20.82, which lies within the range
of experimental errors; for example, the PDG’98 average is RZ = 20.77±0.07 [20]. This fact
can be understood if one takes into account that there are differences between the shapes of
the analytic and perturbative running couplings and also in the terms of the corresponding
series.

We found that the value of δan depends so slightly on ΛMS that a 0.9% error in Rτ gives
18% error in the value of ΛMS. (This is the reason why the errors in the values of ΛMS and
α(M2

τ ) given by APT are larger than those in PT.) We illustrate this feature in Table III.
According to the table, when we change M2

τ /Λ2 from 2.0 to 6.5 (corresponding to a variation
of Λ from 1.256 GeV to 0.697 GeV), δan is only altered by about 20%. The sensitivity to
ΛMS increases as M2

τ /Λ2 gets smaller.
Consider now the RS dependence of the APT result and compare it with the perturba-

tive LP approach,3 which of the two PT schemes is more preferable from the viewpoint of
sensitivity to RS dependence. In the framework of the PT, the RS dependence of δQCD has
been discussed in detail in [29].

In the MS scheme we adopt δan,pt = 0.1906 and consider some RS belonging to the
domain described above [see Eq. (23)]. Take two schemes, A and B, located at the two lower
corners of the boundary of the domain (see Fig. 1), i.e., they have the same cancellation
index as does the PMS scheme, with A = (−1.6183, 0) and B = (0.9575, 0), where the first
coordinate is d1 and the second is c2. Then for the PT case in NNLO we get δpt(A) = 0.2025
and δpt(B) = 0.1911. Therefore, even for this sufficiently narrow class of RS the perturbative
approach gave a 6% deviation in δQCD that corresponds to a RS uncertainty for the running
coupling value in the MS-scheme of ∆αRS

pt = 0.0153. The difference between APT results
is much smaller: δan(A) = 0.1890 and δan(B) = 0.1905, and we have only 0.8% deviation,
which corresponds in the MS-scheme to a RS uncertainty of ∆αRS

an = 0.0035. The similar RS
stability holds also at the two-loop level: one has a 5% deviation in the PT case and only a
0.4% for the APT. We display our NNLO results in the form of a contour plot, in Fig. 1.

It is worthwhile to analyze some schemes lying outside the domain considered above
with the relatively small value of the cancellation index C ' 2. Among them there is, for
instance, the commonly used MS scheme which does not belong this domain. In [29] it was
shown that the so-called V scheme [30] lies very far from the domain described above and
gives so a large value of δpt that it cannot be used at this low energy. For the V scheme we

3The LP approach is often called the contour-improved fixed-order PT (CIPT) [25].
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have d1 = −0.109 and c2 = 26.200. The three-loop perturbative result is δpt(V ) = 0.3060
that corresponds to about a 61% deviation from the MS scheme. On the other hand, if we
turn to APT we have δan = 0.1902, i.e., only about a 0.2% deviation from the MS scheme.
So the V scheme is still useful at this energy in APT.

In PT at high energies the weak RS dependence is a consequence of the small value of the
coupling constant. At lower energies the uncertainty increases. In APT, at high energies,
the situation is the same. However, at low energies the theory has a universal RS-invariant
infrared limiting value dan(0), which restricts the RS ambiguity over a very wide range of
momentum. Another way to illustrate the remarkable stability of APT is to calculate the
spectral functions %n(σ) given by Eq. (15); one sees that %1(σ) is much smaller than %0(σ) over
the whole spectral region. The same statement is true for the relationship between %1(σ)
and %2(σ). This monotonically decreasing behavior reduces the RS dependence strongly,
since the perturbative coefficients d1 and d2 in expression (14) for ρ(σ) are multiplied by
these functions. For the MS scheme, this situation is demonstrated in Fig. 2.

IV. CONCLUSION

We have considered inclusive τ -decay in three-loop order within analytic perturbation
theory concentrating on the analysis of theoretical uncertainties coming from the perturba-
tive short distance part of the QCD correction to the Rτ -ratio, which defines the principal
contribution to this physical quantity. For the low energy τ -mass scale, the main source
of theoretical uncertainties results from the inevitable truncation of the perturbative series,
which leads to the essential RS dependence and higher loop sensitivity of the theoretical
predictions. In order to resolve this problem within the conventional perturbative approach
it is possible to try, in principle, to compute higher loop contributions. However, even if
this were to be done, one has to keep in mind that from the rigorous point of view it will
hardly be sufficient because the series is asymptotic, and, in any finite order, the analytic
properties of the hadronic correlator, which arise from general principles of the theory, are
violated. Thus, to resolve this problem one has to use a modification of the perturbative
expansion at low energy scales.

Here, we have applied the analytic approach which is not inconsistent with the general
principles of quantum field theory and which opens up the possibility of reducing the the-
oretical uncertainties associated with short distance contributions mentioned above. Let
us summarize the important features of this method: (i) the method maintains the cor-
rect analytic properties and leads to a self-consistent definition of the procedure of analytic
continuation from the spacelike to the timelike region; (ii) the APT approach has much
improved convergence properties and turns out to be stable with respect to higher-loop cor-
rections; (iii) the RS dependence of the results obtained is reduced drastically. For example,
the V scheme, which gives a very large discrepancy in standard perturbation theory, can
be used in analytic perturbation theory without any difficulty and the APT predictions are
practically RS independent over a wide region of RS parameters.

The nonperturbative power corrections coming from the operator product expansion (in
this connection see a discussion in [31,32]), renormalon and other effects are beyond the
scope of our present consideration. Note, however, that the process of enforcing analyticity
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modifies the perturbative contributions by incorporating some nonperturbative terms. The
form of the APT running coupling and the non-power structure of the APT expansion are
essentially different from the PT ones. Numerically, this difference becomes very important
in the region less than a few GeV and in order to get the same physical quantity the
contribution of power corrections should also be changed.

The value of ΛAPT is very sensitive to the experimental value of Rτ . For example, as has
been demonstrated in [13] the use of the value of Rτ obtained by the CLEO collaboration [33]
gives a value of the scale parameter some 30% smaller than that found here. Note also that
the renormalon contribution influences the value of Λ extracted from the τ data (see [34] for a
review). Within the usual approach, renormalons reduce the value of αs(M

2
τ ) by about 15%.

A similar situation holds also in APT and for the nonperturbative a-expansion approach [35],
which allows one, as in APT, to maintain the required analyticity [23]. These two analytic
approaches often lead to rather similar consequences. For example, they allow one to get
a good description of experimental data corresponding to the Euclidean and Minkowskian
characteristics of the process of e+e− annihilation into hadrons down to the lowest energy
scale [14,36].

Pure massless APT analysis, which has been performed here, leads to an unusually large
value of the QCD scale parameter Λ as compared to the conventional PT value. This
is connected with the presence of nonperturbative contributions that appear in the APT
method which have a negative relative sign. The effects mentioned above can change the
value of the scale parameter extracted from the τ data. However, this fact is not relevant for
the essential conclusion which we have claimed in this paper, that the APT method provides
predictions which are stable with respect to the choice of renormalization scheme and to the
inclusion of higher loop corrections. Thus, the analytic approach discussed here is not in
conflict with the general principles of the theory and allows one to reduce the uncertainties
of theoretical predictions drastically.
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FIG. 1. Contour plot of values of δan at the three-loop order as a function of RS parameters d1

and c2. The dashed line indicates the boundary of the domain, defined by Eq. (23) with C = 2,

the heavy points are the positions of the A, B and MS schemes.
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FIG. 2. The spectral densities %0, %1 · 10 and %1 · 102 vs. L = ln(σ/Λ2) in the MS scheme.
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TABLES

TABLE I. Successive loop contributions to the PT and APT expansions for

Rτ/[3SEW(|Vud|
2 + |Vus|

2)].

Method of description Expansion terms

PT (Br) [6] 1 + δBr
pt = 1 + 0.104 + 0.056 + 0.030

PT (LP) [7] 1 + δLP
pt = 1 + 0.148 + 0.030 + 0.012

APT [8] 1 + δan = 1 + 0.167 + 0.021 + 0.002

TABLE II. QCD parameters extracted from Rτ = 3.642 ± 0.019 [25] in the MS scheme.

Approximation Method ΛMS (MeV) α(M2
τ )

NNLO PT (Br) 366± 14 0.328 ± 0.007

PT (LP) 391± 16 0.340 ± 0.008

APT 907± 94 0.403 ± 0.015

NLO PT (Br) 492± 17 0.371 ± 0.009

PT (LP) 465± 19 0.358 ± 0.009

APT 954± 90 0.404 ± 0.014

TABLE III. NLO and NNLO predictions for δan in the MS scheme.

M2
τ /Λ2 δNLO

an δNNLO
an M2

τ /Λ2 δNLO
an δNNLO

an

2.0 0.2090 0.2106 4.5 0.1820 0.1857

2.5 0.2016 0.2039 5.0 0.1785 0.1824

3.0 0.1955 0.1983 5.5 0.1753 0.1795

3.5 0.1904 0.1935 6.0 0.1724 0.1767

4.0 0.1859 0.1894 6.5 0.1698 0.1743
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