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Abstract. We comment on a recent calculation of the zero-point energy for a dilute

and infinitely long cylinder of purely-dielectric material. The vanishing result predicted

by integration of van der Waals potentials is obtained.
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The Casimir effect is a change in the electromagnetic vacuum fluctuations brought

about by the presence of boundaries. Particularly, cylindrical surfaces limiting dielectric

media were considered in [1]. One of the first versions of that paper inspired an

unpublished calculation, by Romeo, of the van der Waals energy for a purely dielectric

cylinder in the dilute-dielectric approximation, which yielded a null result. That

calculation found a tribune in appendix B of the final version of [1] and, eventually,

unpublished work by Milonni and ref.[2] by Barton provided independent confirmations.

This finding aroused curiosity about the corresponding Casimir energy, which would

have to show the predicted equality between both quantities [3] and, therefore, was

expected to vanish similarly. The divergences of this problem were studied through its

heat kernel coefficents in [4], and the expected vanishing was first verified in [5], where

the Casimir pressure was obtained from the expectation value of the stress-energy tensor

using Green’s functions. Next, a calculation of the Casimir energy based on the mode

summation method [6] was completed. The present note offers a comment on that work.

Let Jm, Hm denote the Bessel and Hankel functions (for y > 0, Hm(y) ≡ H(1)
m (y)).

Given an infinitely long cylinder of radius a, oriented along the z-axis, with permittivity

and permeability (ε1, µ1), surrounded by a medium with permittivity and permeability

(ε2, µ2), the eigenfrequencies ω of the Maxwell equations with the adequate boundary
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conditions are the solutions of:

fm(kz, ω) = 0, m ∈ Z, kz ∈ R,

fm(kz, ω) ≡
1

∆2

[

∆TE
m (x, y) ∆TM

m (x, y) − m2 a4ω2k2
z

x2y2
(ε1µ1 − ε2µ2)

2J2
m(x) H2

m(y)

]
(1)

(see [7, 1]), where

∆ = −
2i

π
,

∆TE
m (x, y) = µ1yJ ′

m(x) Hm(y) − µ2xJm(x) H ′

m(y),

∆TM
m (x, y) = ε1yJ ′

m(x) Hm(y) − ε2xJm(x) H ′

m(y),

x = λ1a, y = λ2a, λ2
i = εiµiω

2 − kz, i = 1, 2.

(2)

The m index is the azimuthal quantum number, kz is the momentum along the cylinder

axis, and p labels the zeroes of fm(kz, ω). In fact fm = −∆−2Ξ, being Ξ the same object

as in [5] and ∆−2 a factor introduced for convenience. The velocities of light in each

media are ci = (εiµi)
−1/2, i = 1, 2.

If medium 1 is purely dielectric and medium 2 is vacuum, ε1 = ε, µ1 = 1,

ε2 = µ2 = 1 (obviously, c2 = 1). Further,

ω = a−1(y2 + k̂2)1/2, x2 = y2 + (ε − 1)(y2 + k̂2), k̂ ≡ kza. (3)

The Casimir energy per unit length stems from the mode sum

EC =
1

2
~

∫
∞

−∞

dkz

2π

∑

m

∑

p

ωm,p,kz , (4)

which is divergent, and will be regularized appropriately (see below). Reference [4] tells

us that, up through the order of (ε − 1)2, there are no ambiguities, because the heat

kernel coefficient which would multiply them is of O((ε − 1)3). Thus, we may just set

EC(s) =
~

2

∫
∞

−∞

dkz

2π

∑

m

∑

p

ω−s
m,p,kz

=
~

2
as−1

∫
∞

−∞

dk̂

2π

∑

m

∑

p

(y2
m,p + k̂2)−s/2, (5)

without any additional mass scale. EC(s) is a function of the complex variable s, and

our idea is to redefine (4) by analytic continuation of this function to s = −1, i.e.,

EC = lim
s→−1

EC(s). (6)

Once that k̂, m have specific values, the sum over p is expressed as a contour integral

in complex y plane:

EC(s) =
~

2
as−1

∫
∞

−∞

dk̂

2π

∞∑

m=−∞

s

2πi

∫

C
dy y (y2 + k̂2)−s/2−1 ln fm, (7)

where C is a circuit enclosing all the y values corresponding to the positive zeroes of

fm (the argument principle [8] derived from the residue theorem). When applying this

method, one sometimes finds an asymptotic form fm,as of fm and then subtracts ln fm,as

from ln fm in the integrand. In fact, the factors introduced in (1) relative to the original
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fm of [1] have the same effect as having divided that function by the leading part of

fm,as.

At this point, the logarithm function of (7) is expanded in powers of (ε−1), taking

y as an independent variable and x as a function of y, k̂, ε (see (3)). Then,

ln fm =
[
L0

m1(y) + L1
m1(y)(y2 + k̂2)

]
(ε − 1)

+
[
L00

m2(y) + L10
m2(y)(y2 + k̂2) + L20

m2(y)(y2 + k̂2)2

+L11
m2(y)(y2 + k̂2) k̂2

]
(ε − 1)2

+ O((ε − 1)3),

(8)

where

L0
m1(y) =

1

∆
y J ′

m(y)Hm(y),

L1
m1(y) =

1

∆y
∆(1,0)

m (y),

L00
m2(y) = −

1

2∆2
y2 J ′

m
2
(y)H2

m(y),

L10
m2(y) = −

1

2∆2

[
∆(1,0)

m (y)J ′

m(y)Hm(y)

+
∆

y

(

J ′

m(y) + y

(

1 −
m2

y2

)

Jm(y)

)

Hm(y)

]

,

L20
m2(y) = L20A

m2 (y) + L20B
m2 (y),






L20A
m2 (y) =

1

4∆y2

(

∆(2,0)
m (y) −

1

y
∆(1,0)

m (y)

)

,

L20B
m2 (y) = −

1

4∆2y2

(
∆(1,0)

m (y)
)2

,

L11
m2(y) = −

m2

∆2y4
J2

m(y)H2
m(y),

(9)

with

∆(1,0)
m (y) = −

1

y

[
y2J ′

m(y)H ′

m(y) + (y2 − m2)Jm(y)Hm(y)
]
− (Jm(y)Hm(y))′,

∆(2,0)
m (y) =

(
∆(1,0)

m (y)
)
′

−

(

1 −
m2 + 1

y2

)

∆, (∆(1,0)
m (y))′ ≡

d

dy
∆(1,0)

m (y).
(10)

Now, (8) is inserted into (7). The obtained expression involves integrals of the form

I ≡

∫
∞

−∞

dk̂
∫

C
dy y F (y) (y2 + k̂2)−α k̂2β, (11)

where C is the contour of (7) and F satisfies F (−iv) = F (iv) for v ∈ R, as well as

having good asymptotic properties (the role of F is played by the Lm’s of (9),(10)).

Examining the (y2 + k̂2) powers in (7), (8), one sees that, in the required cases,

α = s/2 + 1, s/2, s/2 − 1, and β = 0 except for one integral with β = 1. Analytic

continuation in s obviously amounts to analytic continuation in α. Following [6], the

value of I is given by

I = −2i B
(
β +

1

2
, 1 − α

)
sin(πα)

∫
∞

0
dv v2−2α+2β F (iv), (12)
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where B denotes the Euler beta function (about the mathematical basis, see also [9, 10]).

Note that for s = −1, i.e., α = 1/2,−1/2,−3/2, and for β = 0, 1, the beta and sine

functions are finite. Application of formula (12) to Eqs. (7), (8) gives:

EC(s) = EC1(s)(ε − 1) + EC2(s)(ε − 1)2 + O((ε − 1)3), (13)

where

EC1(s) = E0
C1(s) + E1

C1(s),




E0
C1(s) = −

~

2

sas−1

2π2
B
(

1

2
,−

s

2

)
sin

(
−π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v−sL0

m1(iv),

E1
C1(s) = −

~

2

sas−1

2π2
B
(

1

2
, 1 −

s

2

)
sin

(
π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v2−sL1

m1(iv),

(14)

and

EC2(s) = E00
C2(s) + E10

C2(s) + E20A
C2 (s) + E20B

C2 (s) + E11
C2(s),





E00
C2(s) = −

~

2

sas−1

2π2
B
(

1

2
,−

s

2

)
sin

(
−π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v−sL00

m2(iv),

E10
C2(s) = −

~

2

sas−1

2π2
B
(

1

2
, 1 −

s

2

)
sin

(
π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v2−sL10

m2(iv),

E
20A,B
C2 (s) = −

~

2

sas−1

2π2
B
(

1

2
, 2 −

s

2

)
sin

(
−π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v4−sL20A,B

m2 (iv),

E11
C2(s) = −

~

2

sas−1

2π2
B
(

3

2
, 1 −

s

2

)
sin

(
π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v4−sL11

m2(iv).

(15)

With E0
C1(s) taken from (14), and L0

m1(iv) from (9), we arrive at

E0
C1(s) = −

~

2

sas−1

2π2
B
(

1

2
,−

s

2

)
sin

(
−π

s

2

) ∞∑

m=−∞

∫
∞

0
dv v1−s I ′

m(v)Km(v). (16)

The beta and sine functions are already finite at s = −1, and the integral will be

reexpressed by introducing the factor 1 = −vW [Im(v), Km(v)] = −v[Im(v)K ′

m(v) −

I ′

m(v)Km(v)] for every m:
∫

∞

0
dv v1−s

∞∑

m=−∞

I ′

m(v)Km(v) =

−

∫
∞

0
dv v2−s

∞∑

m=−∞

Im(v)I ′

m(v)Km(v)K ′

m(v) +
∫

∞

0
dv v2−s

∞∑

m=−∞

I ′

m
2
(v)K2

m(v).
(17)

The summations over m will be performed by taking advantage of the addition theorem

for the modified Bessel functions:
∞∑

m=−∞

Im(kr)Km(kρ) eimφ = K0(kR(r, ρ, φ))

R(r, ρ, φ) =
√

r2 + ρ2 − 2rρ cosφ, ρ > r.

(18)
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Suitable manipulations of this identity ([11, 12, 5, 6]) yield:
∫

∞

0
dv v2−s

∞∑

m=−∞

I ′

m
2
(v)K2

m(v) =

∫
∞

0
dv v2−s

∞∑

m=−∞

K ′

m
2
(v)I2

m(v) =

∫
∞

0
dv v2−s

∞∑

m=−∞

Im(v)I ′

m(v)Km(v)K ′

m(v) = 1
8π1/2

Γ( 5−s
2 )Γ2( 3−s

2 )Γ( 1−s
2 )

Γ(3−s)

Γ( s
2)

Γ( s+1

2 )
∫

∞

0
dv v2−s

∞∑

m=−∞

m2Im(v)I ′

m(v)Km(v)K ′

m(v) = 1
16π1/2

Γ4( 5−s
2 )

Γ(5−s)

Γ( s−2

2 )
Γ( s+1

2 )
∫

∞

0
dv v4−s

∞∑

m=−∞

I ′

m
2
(v)K ′

m
2
(v) = 1

8π1/2

[
Γ4( 5−s

2 )
Γ(5−s)

Γ( s
2)

Γ( s+1

2 )

+
Γ2( 5−s

2 )Γ2( 3−s
2 )

Γ(4−s)

Γ( s−2

2 )
Γ( s−1

2 )

+1
4

Γ( 5−s
2 )Γ2( 3−s

2 )Γ( 1−s
2 )

Γ(3−s)

Γ( s−4

2 )
Γ( s−3

2 )

]

∫
∞

0
dv v4−s

∞∑

m=−∞

I2
m(v)K2

m(v) = 1
8π1/2

Γ4(5−s
2 )

Γ(5−s)

Γ( s−4

2 )
Γ( s−3

2 )
∫

∞

0
dv v2−s

∞∑

m=−∞

m2I2
m(v)K2

m(v) = 1
16π1/2

Γ( 7−s
2 )Γ2( 5−s

2 )Γ( 3−s
2 )

Γ(5−s)

Γ( s−4

2 )
Γ( s−1

2 )
∫

∞

0
dv v−s

∞∑

m=−∞

m4I2
m(v)K2

m(v) = 1
8π1/2

[
3
4

Γ4( 5−s
2 )

Γ(5−s)

Γ( s−4

2 )
Γ( s+1

2 )

+1
2

Γ2( 5−s
2 )Γ2( 3−s

2 )
Γ(4−s)

Γ( s−4

2 )
Γ( s−1

2 )

+1
4

Γ( 5−s
2 )Γ2( 3−s

2 )Γ( 1−s
2 )

Γ(3−s)

Γ( s−4

2 )
Γ( s−3

2 )

]

∫
∞

0
dv v3−s

∞∑

m=−∞

I ′

m
2
(v)Km(v)K ′

m(v) =

∫
∞

0
dv v3−s

∞∑

m=−∞

K ′

m
2
(v)Im(v)I ′

m(v) = − 1
8π1/2

[
Γ2( 5−s

2 )Γ2( 3−s
2 )

Γ(4−s)

Γ( s
2)

Γ( s+1

2 )

+1
2

Γ( 5−s
2 )Γ2( 3−s

2 )Γ( 1−s
2 )

Γ(3−s)

Γ( s−2

2 )
Γ( s−1

2 )

]

∫
∞

0
dv v3−s

∞∑

m=−∞

I2
m(v)Km(v)K ′

m(v) =

∫
∞

0
dv v3−s

∞∑

m=−∞

K2
m(v)Im(v)I ′

m(v) = − 1
8π1/2

Γ2( 5−s
2 )Γ2( 3−s

2 )
Γ(4−s)

Γ( s−2

2 )
Γ( s−1

2 )
∫

∞

0
dv v1−s

∞∑

m=−∞

m2I2
m(v)Km(v)K ′

m(v) =

∫
∞

0
dv v1−s

∞∑

m=−∞

m2K2
m(v)Im(v)I ′

m(v) = − 1
16π1/2

Γ2( 5−s
2 )Γ2( 3−s

2 )
Γ(4−s)

Γ( s−2

2 )
Γ( s+1

2 )
.

(19)

Although the left hand side of each integral is not initially defined for s = −1, the

right hand side together with the remaining s dependent factors in EC(s) will eventually

provide the desired extension to negative s through the existing analytic continuations

of the involved functions. Then, the poles at s = −1,−3,−5, . . . in the last dividing
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gamma functions, will give rise to zeros at these points.

Going back to E0
C1(s), since (19) show that the two integrals in the second line of

(17) have the same value,

E0
C1(s) = 0, (20)

even before setting s = −1.

Formulas (14) tell us that E1
C1(s) involves the integration of the L1

m1(iv) function,

defined by (9), (10). Therefore,

E1
C1(s) = −

~

2

sas−1

2π2
B
(

1

2
, 1 −

s

2

)
sin

(
π

s

2

)

×
∞∑

m=−∞

∫
∞

0
dv v2−s

[

I ′

m(v)K ′

m(v) −

(

1 +
m2

v2

)

Im(v)Km(v) +
1

v
(Im(v)Km(v))′

]

.
(21)

We multiply, again, each term in the m summation of (21) by 1 = −vW [Im(v), Km(v)],

and turn the initial expression into a linear combination of integrals with summations

of products of four Bessel functions. That linear combination yields an identically null

result — one that is zero for any s value — by virtue of the symmetries observed in (19)

under interchange of different Bessel function types (see also comment after Eqs. (80)

in [5]). As a result,

E1
C1(s) = 0. (22)

Equation (21) admits the following reinterpretation. Taking into account the fact

that Im, Km satisfy the modified Bessel equation, we apply partial integration to (21)

omitting a ‘boundary term’ which vanishes for a given s range that does not include

s = −1 yet. Doing so, we find

E1
C1(s) = −

~

2

sas−1

2π2
B
(

1

2
, 1 −

s

2

)
sin

(
π

s

2

)

×

[∫
∞

0
dv v1−s

∞∑

m=−∞

(Im(v)Km(v))′ +
2

1 − s

∫
∞

0
dv v2−s

∞∑

m=−∞

Im(v)Km(v)

]

.
(23)

These integrals cannot be straightforwardly taken at s = −1 but, if this is ignored, we

may formally put s = −1 and get

E1
C1(−1) → −

~

8πa2

∫
∞

0
dv v2

∞∑

m=−∞

(Im(v)Km(v))′−
~

8πa2

∫
∞

0
dv v3

∞∑

m=−∞

Im(v)Km(v).(24)

The first part could arguably be dismissed as a mere contact term because, from

(18), it may be shown that it is local in v (In fact it is possible to obtain

limφ→0
∑

∞

m=−∞
(Im(v)Km(v))′eimφ = −1

v
). The second part of (24) cancels the bulk

contribution found in [5] (See formulas (72), (78) there and recall that the Casimir

radial pressure is PC = 1
πa2EC .)

Viewed in a different way, by the arguments in [13] (and references therein) all

linear terms in (ε2 − ε1) have to be removed because they are the self-energy of the

electromagnetic field due to polarizable particles. By that rule, one simply must take
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out the linear part, regardless of its particular form. This is actually a re-statement of

the physical reason for the removal of the bulk contribution.

When going on to second order in (ε − 1), we take first the piece called E20A
C2 (s),

as its calculation is most similar to that of E0
C1(s), E1

C1(s). From the E20A
C2 (s) given

in (15), the L20A
m2 (y) in (9), expressions (10) with y = iv, introducing, once more,

1 = −vW [Im(v), Km(v)], and using the same reasoning that led to (22), one gets

E20A
C2 (s) = 0. (25)

Now, selecting the lines in (15), which determine E00
C2(s), E

10
C2(s), E

20B
C2 (s), E11

C2(s), the

parts of (9) which define L00
m2(y), L10

m2(y), L20B
m2 (y), L11

m2(y), the form of ∆(1,0)
m (y) dictated

by (10) (its square for the case of L20B
m2 (y)), and setting y = iv, we come to

E00
C2(s) =

~

2

sas−1

4π2
B
(

1

2
,−

s

2

)
sin

(
−π

s

2

)∫
∞

0
dv v2−s

∞∑

m=−∞

I ′

m
2
(v)K2

m(v),

E10
C2(s) =

~

2

sas−1

4π2
B
(

1

2
, 1 −

s

2

)
sin

(
π

s

2

) ∫
∞

0
dv v2−s

×
∞∑

m=−∞

[
2Im(v)I ′

m(v)Km(v)K ′

m(v) + v I ′

m
2
(v)Km(v)K ′

m(v)

−

(

v +
m2

v

)

I2
m(v)Km(v)K ′

m(v)

]

,

E20B
C2 (s) =

~

2

sas−1

8π2
B
(

1

2
, 2 −

s

2

)
sin

(
−π

s

2

)∫
∞

0
dv v2−s

×
∞∑

m=−∞

[
I ′

m
2
(v)K2

m(v) + I2
m(v)K ′

m
2
(v)

+2(1 − v2 − m2)Im(v)I ′

m(v)Km(v)K ′

m(v)

+v2I ′

m
2
(v)K ′

m
2
(v) +

(

v2 + 2m2 +
m4

v2

)

I2
m(v)K2

m(v)

+2v
(
I ′

m
2
(v)Km(v)K ′

m(v) + Im(v)I ′

m(v)K ′

m
2
(v)
)

−2

(

v +
m2

v

)(
Im(v)I ′

m(v)K2
m(v) + I2

m(v)Km(v)K ′

m(v)
)]

,

E11
C2(s) =

~

2

sas−1

2π2
B
(

3

2
, 1 −

s

2

)
sin

(
π

s

2

) ∫
∞

0
dv v−s

∞∑

m=−∞

m2I2
m(v)K2

m(v).

(26)

The outcome of replacing the results (19) into (26) and expanding in (s + 1) is:

E00
C2(s) + E10

C2(s) + E20B
C2 (s) + E11

C2(s) =
~

a2
Ê(s + 1) + O((s + 1)2), (27)

with Ê = 23
5760π

. Formulas (25) and (27) make evident that

lim
s→−1

EC2(s) = 0, (28)

i.e., the (ε−1)2 contribution to the Casimir energy per unit length in the dilute-dielectric

approximation is zero, as we wished to prove.

Employing a regularization which analytically continues the vacuum energy as a

function of the eigenmode power, we have found a pure Casimir term (in the sense
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of [2]) that is seen to vanish to the order of (ε − 1)2. Remarkably, for the analogous

problem with light velocity conservation condition [1, 12] the result is null to the order

of ξ2 ≡
(

ε1−ε2

ε1+ε2

)2
. In fact, we have applied a form of zeta function regularization, whose

links to other techniques have been studied in e.g. [14]. The sight of (19) makes us

evoke the words of [15] and proclaim that a forest of gamma functions has grown out of

an analytic continuation.

A divergence at third order in (ε − 1) introduces an unavoidable ambiguity [4]

(for further discussions on divergences see [16].) No universal agreement exists on the

physical interpretation of the technique used, as commented in [15]. The nature of a

third order divergence, viewed as a weak-coupling limit, has been considered in [17].
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