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It is shown that a version of PT -symmetric electrodynamics based on an axial-vector
current coupling massless fermions to the photon possesses anomalies and so is rendered
nonrenormalizable. An alternative theory is proposed based on the conventional vector
current constructed from massive Dirac fields, but in which the PT transformation prop-
erties of electromagnetic fields are reversed. Such a theory seems to possess many attractive
features.
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1 Introduction

In 1996 we proposed [1] that a new class of quantum field theories might exist,
in which the Lagrangian need not be Hermitian, yet the theory still might possess
a positive spectrum. In these theories both parity P and time-reversal T invariance
were violated, but the product PT symmetry was unbroken. Apparently, it is the
presence of PT symmetry that replaces Hermiticity in guaranteeing positivity of
the spectrum.

In early papers we examined parity violation in scalar field theories with inter-
action [1]

Lint = −g(iφ)N , (1)

proved that the supersymmetry of theories possessing the superpotential [2]

S = −ig(iφ)N (2)

was not broken by (nonperturbative) quantum corrections, suggested that a stable
eigenvalue condition held in massless electrodynamics defined by an axial vector
current [3]

jµ5 = e
1
2
ψγ0γµγ5ψ, (3)

and showed that the Schwinger-Dyson equations for the theory [4]

Lint = −gφ4 (4)

possessed both perturbative and nonperturbative solutions.
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2 PT -symmetric electrodynamics

In this talk we will reconsider the PT -symmetric version of massless electrody-
namics [3], which is described by the Lagrangian

L = −1
4
FµνFµν −

1
2
ψγ0γµ

1
i
∂µψ + e

1
2
ψγ0γµγ5Aµψ. (5)

Our conventions are the following: γ0 is antisymmetric and pure imaginary, γ0γµ

is symmetric and real, γ5 = γ0γ1γ2γ3 is antisymmetric and real, and (γ5)2 = −1.
The fermion field ψ is expected to be complex.
L possesses gauge invariance:

Aµ → Aµ + ∂µλ, ψ → eieγ5λψ. (6)

The gauge transformation on the fermion field is not a phase transformation, but
a scale transformation; nevertheless it leaves invariant the fermion bilinears in the
Lagrangian, and in the energy-momentum tensor. Note that a mass term 1

2mψγ
0ψ

breaks this gauge symmetry.
We had expected (erroneously as we shall see) the weak-coupling Feynman rules,

for graphs with even numbers of γ5s to be the same as those in ordinary QED, except
that α→ −α. This is very intriguing, for it suggests that the program of Johnson,
Baker and Willey [5] might succeed, for now their eigenvalue condition for the fine
structure constant reads, in terms of the “quenched” beta function,

0 = F1(α) = −4
3

( α
4π

)
+ 4

( α
4π

)2

+ 2
( α

4π

)3

− 46
( α

4π

)4

+ . . . , (7)

which displays all the coefficients calculated to date (remarkably integers). Keeping
two, three, and four terms in this series gives a sequence of quite stable positive
roots:

α2 = 4.189, (8)
α3 = 3.657, (2, 1) Padé: 3.590, (9)
α4 = 4.110, (3, 1) Padé. (10)

2.1 Erratum

This is an appropriate point to acknowledge an error in Ref. [3]. There it was
stated that the eigenfunction condition in conventional QED, obtained by replacing
α→ −α in Eq. (7), possesses only the following successive positive roots of F1:

α3 = 13.872, (11)
α4 = 3.969, (1, 2) Padé: 0.814, (2, 1) Padé: 0.545. (12)

These were nearly completely misstated. The correct positive roots are

α3 = 28.79, (13)
α4 = 4.804, (2, 1) Padé of F1/α : 0.545. (14)
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Fig. 1. Triangle graph occurring in the axial-vector PT -symmetric quantum electrody-
namics.

The conclusion, however, that the conventional QED shows no sign of stability of
the eigenvalue, is of course unaltered.

2.2 Difficulties with this version of electrodynamics

However, there is no Furry’s theorem for this PT -symmetric electrodynamics, be-
cause the antisymmetrical charge matrix q of ordinary QED is replaced by the
antisymmetrical γ5 matrix: (ψ is a Grassmann element)

jµ =
1
2
ψγ0γµeqψ →

1
2
ψγ0γµeγ

5ψ. (15)

Thus there is a three-photon triangle graph as shown in Fig. 1. This would seem
to completely change the weak coupling expansion from that in normal QED. In
particular, F1 is not simply obtained from that in ordinary QED!

It is well-known that the AAA triangle graph possesses an axial-vector anomaly.
This is usually seen as a consequence of enforcing Bose symmetry, which thereby
resolves the ambiguity associated with a superficially linearly divergent loop inte-
gration [6]. This is in contrast with the more familiar AVV graph, where the axial
anomaly arises from enforcement of vector current conservation [7].

2.3 Triangle Anomaly

It should be instructive to see how this comes about in a method in which all
quantities are explicitly finite. This is the “causal” or “dispersive” approach, ad-
vocated by Schwinger’s source-theory group in 1970s. As it happens, I have an
unpublished manuscript [8] which presents the calculation of precisely the above
graph in spectral form, for the general situation in which all particles have masses:

Iµνα = Qαεµνλσp
λp′σ

∫ ∞
4m2

dM2

2πi
A2(M2)

M2 +Q2 − iε

+ εµνλα(p− p′)λ
∫ ∞

4m2

dM2

2πi
A1(M2)

M2 +Q2 − iε
. (16)
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Here m is the mass of the fermion, the outgoing “photon” momenta are on the
mass shell, p2 = p′2 = −µ2, and we have set pµ → 0 and p′ν → 0 appropriate for
real, outgoing vector particles. This is a consequence of the property of the three
polarization vectors for a massive, spin-1 particle:

eµpλ : pµe
µ
pλ = 0,

3∑
λ=1

eµpλe
ν
pλ
∗ = gµν +

pµpν

µ2
. (17)

The spectral functions are determined by taking a cut across the q-q′ lines in
the graph: (M2 = −Q2)

Ĩµνα =
∫
dωq dωq′(2π)4δ(Q− q − q′) 1

m2 + (p− q)2

×Tr
[
γ5γµ[m+ γ(p− q)]γ5γν(m− γq′)γ5γα(m+ γq)

]
= Qαεµνλσp

λp′σA2(M2) + εµνλα(p− p′)λA1(M2). (18)

Here the invariant phase-space measure is

dωp =
(dp)
(2π)3

1
2p0

. (19)

Explicit formula may be straightforwardly worked out for the spectral functions for
this general mass case:

A1(M2) = − 1
16π

v

ζ4

{
3− 4ζ2 + ζ4

−
[
3− ζ2 − 3ζ4 + ζ6 + 4ζ2v2(1− ζ2)

]
1

4vζ
lnφ

}
, (20)

A2(M2) = − 1
8πM2

v

ζ4

{
3− 4ζ2 + ζ4

−
[
3− ζ2 + 5ζ4 + ζ6 − 4ζ2v2(1 + ζ2)

]
1

4vζ
lnφ,

}
. (21)

Here

v =
(

1− 4m2

M2

)1/2

, ζ =
(

1− 4µ2

M2

)1/2

, (22)

and

φ =
1 + ζ2 + 2vζ
1 + ζ2 − 2vζ

. (23)

The anomaly is obtained by taking the divergence with respect to the unre-
stricted vertex α, that is, by multiplying by Qα.

iQαIµνα = εµνλσp
αp′σ

{∫ ∞
4m2

dM2

2π
2A1(M2)−M2A2(M2)

M2 +Q2 − iε
+ a

}
, (24)
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Fig. 2. Divergent graph which cannot be renormalized in axial-vector electrodynamics.

where the spectral function in the integral is just the Qα contraction with the cut
amplitude (18). It has a rather simple form:

2A1 −M2A2 = − 1
4πζ3

(ζ2 − v2) lnφ. (25)

The integral vanishes as m→ 0. The anomaly arises because now Q2 6= −M2:

a =
∫ ∞

4m2

dM2

2π
A2(M2) =

1
(2π)2

. (26)

The evaluation, independent of µ2/m2, may be straightforwardly verified. Of course,
the case of direct interest is much simpler, because µ = 0 for a photon:

a =
1

4π2

∫ 1

0

v dv ln
(

1 + v

1− v

)
=

1
4π2

. (27)

It might appear that the correct limit here is to first set m = 0, then take µ → 0.
However this is an anomalous threshold situation, best handled by analytic contin-
uation from the m > µ case.

So the PT -symmetric electrodynamics proposed by us in Ref. [3] seems to pos-
sess a serious difficulty: Because P-violating Green’s functions occur, containing
an odd number of γ5γµ vertices—that is, there is no Furry’s theorem—an axial
vector anomaly can occur in the theory. We have explicitly calculated such an
anomaly. Therefore, it appears that the theory is rendered nonrenormalizable. The
nonrenormalizable divergent graphs appear when, for example, the two photons of
the triangle graph are attached to a fermion line, as shown in Fig. 2.

There are a number of caveats that must be noted concerning this conclusion:

– The Feynman rules, and the unitarity arguments that lead to the dispersion
relations, may have to be modified in the PT theory because the contours
that define the theory do not lie along the real axis in general.
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– There may be a subtlety associated with massless fermions.

– Although this particular version of PT QED may be flawed, it may be possible
to find other variants. (We shall suggest such a possibility in the next section.)

– Of course, it must always be acknowledged that the criterion of renormaliz-
ability is not the final arbiter; nonrenormalizable theories can still be useful,
effective ones.

3 Alternative PT -symmetric electrodynamics

The axial-vector current theory seems to be fatally flawed. Fortunately, there is
an alternative PT -symmetric theory which seems to be, in fact, closer to the spirit
of the general development. Instead, I propose using the usual current,

jµ =
1
2
ψγ0γµeqψ, (28)

but couple it to an axial-vector photon field Aµ:

Lint = ijµAµ. (29)

Note that the factor of i is inserted to ensure PT invariance. Under either P or T
separately, the time component of jµ does not change, while the space component
reverses sign, hence

PT : jµ → jµ. (30)

This is consistent with the modified Maxwell equations,

∇ ·E = iρ, ∇×B =
∂

∂t
E + ij, (31)

provided under PT :1)

PT : E→ E, B→ B, Aµ → −Aµ. (32)

PT invariance of the theory is thus assured:

Lint → Lint. (33)

This theory seems to be a PT QED with

– Furry’s theorem holding (no odd Green’s functions)

– No axial-vector anomaly
1) There actually seem to be two possible theories: Either E is an axial vector and B is a polar

vector, if the scalar potential but not the vector potential, changes sign under parity (this smells
a bit like magnetic charge), or B is an axial vector and E is a polar vector if the vector potential
not the scalar potential changes sign under parity. The latter is more a theory of electric charge.

6 A Czech. J. Phys. 53 (2003)



Anomalies in PT -Symmetric Quantum Field Theory

– Usual perturbation theory with α→ −α.

Everything we erroneously had said about the ijµ5Aµ theory does seems to hold for
the ijµAµ theory.

This new theory would seem to be asymptotically free, since the sign of the
beta function reverses from that in ordinary QED. An antiscreening effect may
occur here because of the attraction of like charges. Quantum-mechanically, the
sign of the vacuum polarization reverses. Whether this implies confinement is under
investigation.

We are also examining questions of the stability of the vacuum, in the presence
of a strong electric field E. The Schwinger mechanism says that the probability of
pair creation in ordinary QED is proportional to

P (0→ e+e−) ∼ e−πm
2/eE ; (34)

what happens in our case?
We will be examining this new “conventional PT -symmetric” QED for consis-

tency, and we ask whether somewhere might it be realized in nature?

I thank Qinghai Wang for extensive discussions, and the US Department of Energy

for financial support. I am very grateful for Miloslav Znojil for inviting me to participate
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the error in the conventional eigenvalues of F1 in Ref. [3].
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