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I. INTRODUCTION

Perturbation theory (PT) is a basic tool of calculation in quantum field theory. When
combined with the renormalization procedure and the renormalization-group method (RG),
it is an unquestionable success in quantum electrodynamics, in the theory of electroweak
interactions, and in the perturbative region of quantum chromodynamics (QCD). As is well
known, nonperturbative effects play a significant role in QCD; however, in the description
of most quark–gluon systems and hadronic processes, there is always present a perturbative
component. It is clear that the reliability of extracting information on nonperturbative ef-
fects is connected to the indeterminacy in the description of the perturbative component.
This indeterminacy arises from the inevitable truncation of PT series. Owing to the prop-
erty of asymptotic freedom in QCD, the perturbative description becomes more reliable at
high energy scales. Here, unknown contributions of higher order perturbative effects do not
result in large errors in the theoretical analysis. However, the high-energy region where the
characteristic scale of a process exceeds tens of GeVs provides scant information concerning
essentially nonperturbative processes. Therefore, it seems important to develop methods of
improving perturbative expansions so as to lower theoretical uncertainties in the description
of physical processes. The point is that the initial PT series, or more precisely, its finite part
after renormalization, is not the final product of the theory but admits of a considerable
modification. In particular, it is well known that the RG method [1] allows one to modify
a perturbative expansion in accordance with the general principle of renormalization invari-
ance, thus improving the properties of the series in the ultraviolet region. As to the infrared
region, where the perturbative invariant charge possesses unphysical singularities (a ghost
pole in the one-loop approximation), the RG-modified PT series remains unstable.

In the late 1950s, in the context of quantum electrodynamics, a method of elimination of
the unphysical singularity from the invariant charge was proposed [2,3]. Recently, in Ref. [4],
this idea was applied to the case of QCD. The analytic approach formulated there combines
the RG method and Q2-analyticity (reflecting the general principles of local quantum field
theory such as spectrality and causality) and results in a number of new interesting proper-
ties of the expansion [5]. Further developments and applications of the analytic method have
been considered in many works, among which we mention Refs. [6–11]. The analytic cou-
pling in exclusive processes was applied in Refs. [12,13]. It has been established that within
the analytic approach one can consistently determine the effective charge in the timelike
region [6]. This opens the possibility of a self-consistent description of processes with char-
acteristic spacelike (q2 < 0) and timelike (q2 > 0) momenta [7], in particular, such basic
processes in QCD as inelastic lepton-hadron scattering and e+e− annihilation into hadrons.
The method developed, called analytic perturbation theory (APT) [8], preserves the correct
analytic properties of such important objects as the two-point correlation function and also
provides a well-defined algorithm for calculating higher loop corrections. In the framework of
APT, the theoretical ambiguity associated with higher-loop corrections and with the choice
of renormalization scheme is diminished. Using the APT method to describe the perturba-
tive component of the QCD description can change the values of nonperturbative parameters
extracted from experimental data. For example, the additional APT terms beyond the stan-
dard PT prediction for the Gross–Llewellyn Smith sum rule have a sign opposite to that of
the typically-used higher-twist term [14] resulting in a numerical cancellation between these
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two corrections [9]. At high Q2-scales, the PT and APT results agree closely with each
other, whether or not the nonperturbative effects are included.

In this paper, we concentrate on the description of the process of inclusive decay of the
τ -lepton into hadrons. Discovered in 1975, the τ -lepton is the only lepton known at present
whose mass is sufficiently large to possess hadronic decay modes. On the other hand, its
mass, Mτ ' 1.78 GeV, is low on the QCD scale, which allows for low-energy tests of the
strong-interaction theory. This is a unique system, since first, the inclusive character of the
decay permits one, in principle, to base the description on standard methods of quantum field
theory without any serious model assumptions. Second, measurements of characteristics of
the decay have been carried out with record accuracy for hadronic processes, with an un-
certainty of less than 1% [15–17]. Thus, the high accuracy of experimental data on τ -lepton
decay and the fact that there is still room for improvements in theoretical methods [18],
stimulate further intensive studies along lines associated with both the perturbative descrip-
tion (see, e.g., Refs. [19–22]) and with nonperturbative effects (see, e.g., Refs. [23–25]). The
aim of this paper is to reveal features of the application of PT and APT expansions in
studying the process of τ -lepton decay into hadrons for which the perturbative contribution
is not merely of theoretical interest, but which also adequately represents real physical data.

The outline of this paper is as follows. In Section 2, we collect some basic relations.
Various commonly used forms of perturbative expansions are described in Section 3. A
similar analysis within the APT approach is given in Section 4. The comparative analysis of
PT and APT methods in describing inclusive τ -decay is presented in Section 5. Summarizing
comments are presented in the last section.

II. BASIC RELATIONS

The inclusive decay of the τ -lepton is described in terms of the correlator of quark
currents

Πµν(q
2) = i

∫

d4x eiqx
〈

0
∣

∣

∣TJµ(x)Jν(0)†
∣

∣

∣ 0
〉

∝ (qµqν − gµν q2) Π(q2) . (1)

For a theoretical analysis, it is convenient to use the RG invariant Adler function [26], which
is connected to the correlator Π(q2) by the formula

D(Q2) = −Q2 dΠ(−Q2)

dQ2
. (2)

Here, we use the standard convention Q2 = −q2 > 0 in the Euclidean region. The integral
representation for the D-function is given in terms of the function R(s), the discontinuity
of the correlator across the cut,

D(Q2) = Q2
∫ ∞

0

ds

(s + Q2)2 R(s) . (3)

The representation (3) defines the function D(Q2) as an analytic function in the complex
Q2-plane with the cut along the negative real axis.
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It is convenient to separate out the parton level contribution, leaving the QCD correc-
tions, d(Q2) and r(s), in the functions D ∝ 1 + d and R ∝ 1 + r , respectively, which are
related by the formulas

d(Q2) = Q2
∫ ∞

0

ds

(s + Q2)2 r(s), (4)

r(s) = −
1

2πi

∫ s+iε

s−iε

dz

z
d(−z) . (5)

The integration contour in Eq. (5) lies in the region of analyticity of the integrand and
encircles the cut of d(−z) on the positive real z axis.

Expressions (4) and (5) can be rewritten in terms of an effective spectral function ρeff(σ)
[6],

d(Q2) =
1

π

∫ ∞

0
dσ

ρeff(σ)

σ + Q2
, (6)

r(s) =
1

π

∫ ∞

s

dσ

σ
ρeff(σ) , (7)

which is determined from the discontinuity of the function d(Q2) across the cut.
The experimentally measured Rτ -ratio of hadronic and leptonic widths of the τ -lepton

can be presented as follows

Rτ = 3 (|Vud|
2 + |Vus|

2) SEW (1 + δτ ) , (8)

where Vud and Vus are elements of the CKM quark mixing matrix [14], SEW is the electroweak
factor (see Ref. [27] for details), and the contribution of strong interactions δτ is expressed
via r(s):

δτ = 2
∫ M2

τ

0

ds

M2
τ

(

1−
s

M2
τ

)2 (

1 + 2
s

M2
τ

)

r(s) . (9)

The relations between the functions r(s) and d(Q2) allow us to represent δτ as a contour
integral in the complex z plane by choosing the contour to be a circle of radius |z| = M 2

τ [28]:

δτ =
1

2πi

∮

|z|=M2
τ

dz

z

(

1−
z

M2
τ

)3 (

1 +
z

M2
τ

)

d(−z) . (10)

The expression (9) can also be written in terms of the moments of r(s)

δτ = 2 m0(M
2
τ )− 2 m2(M

2
τ ) + m3(M

2
τ ) , (11)

which are defined by the relation
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mk(s0) ≡ (k + 1)
∫ s0

0

ds

s0

(

s

s0

)k

r(s) . (12)

Using the expression of r(s) in terms of d(Q2) [see Eq. (4)], we obtain the contour represen-
tation for the moments

mk(s0) =
1

2πi

∮

|z|=s0

dz

z

[

1−
(

z

s0

)k+1
]

d(−z) , (13)

which can be rewritten in the form

mk(s0) =
1

2π

∫ π

−π
dϕ

[

1 + (−1)kei(k+1)ϕ
]

d(−s0e
iϕ) . (14)

convenient for numerical calculations. Note that expressions (9) and (10) as well as expres-
sions (12) and (13) are equivalent only when the above-mentioned analytic properties are
maintained.

III. PERTURBATION THEORY

Consider the functions d(Q2) and r(s) within the framework of perturbation theory for
massless quarks. We can write down Nth-order perturbative expansions as double series in
the coupling a(µ2) = αS(µ2)/π

d(N)(Q2) =
N
∑

n=1

an(µ2)
n
∑

k=0

dn,k lnk

(

Q2

µ2

)

, (15)

r(N)(s) =
N
∑

n=1

an(µ2)
n
∑

k=0

rn,k lnk

(

s

µ2

)

. (16)

Then using relations (4) and (5), we derive the connection between the coefficients of these
expansions

dn,k =
n−k
∑

m=0

(k + m)!

k! m!
rn,k+m Jm , (17)

rn,k =
n−k
∑

m=0

(k + m)!

k! m!
dn,k+m Im , (18)

where Jm = Im = 0 for odd m and

Jm = 2m! ζ(m)
(

1− 21−m
)

, (19)

Im = (−1)m/2 πm

m + 1
(20)

for even m. Here ζ(m) is the Riemann ζ-function. The distinction between the coefficients
dn,k and rn,k starts at the three-loop level,
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d3,0 = r3,0 + r3,2
π2

3
= r3,0 + β2

0

π2

3
, (21)

where β0 is the first coefficient of the QCD β-function, and is connected with the so-called
π2-terms. This usual “π2-terminology” is in accordance with expression (19), if it is recalled
that ζ(2m) ∝ (π2)m, and also with expression (20).

Therefore, the π2-terms appear prior to the renormalization-group summation due to the
requirement of correspondence between the initial perturbative expansion (15) given in the
Euclidean (spacelike) region and the expansion (16) in the physical (timelike) region.1 The
π2-terms play an important role in analyzing various hadronic processes (see, e.g., [31–34]).
A large value of the π2-contribution that distinguishes the third perturbative coefficients in
the expansion of spacelike and timelike quantities can result in different signs for the second
renormalization-scheme invariant ω2 [35] for these quantities. In particular, this takes place
for the process of e+e− annihilation into hadrons. In this case, signs of the second invariant
for the timelike quantity, the well-known Re+e−-ratio, and the corresponding D-function, the
spacelike quantity, are different. A negative sign for the second scheme invariant for Re+e−

leads to infrared freezing of the effective charge that arises in optimization of the scheme
dependence [36,37] on the basis of the principle of minimal sensitivity (PMS) [35] or in the
method of effective charge (ECH) [38,39]. At the same time, the sign of the second scheme
invariant for the D-function remains positive, and the perturbative analysis based on either
the PMS and ECH method of optimization does not lead to charge freezing in the Euclidean
region (for more details, see Refs. [40,41]). Thus, there arises a discrepancy between the
result of direct application of the PMS or ECH optimizations for the D-function, leading to
a singular infrared behavior, and its calculation in terms of the dispersion relation (3) with
the use of the PMS/ECH optimized function R(s), which leads to a regular function on the
whole interval of momentum transfer. This discrepancy is not solely caused by truncation
of the perturbative expansion.

The initial series (15) possesses the important positive feature that any finite order
preserves the correct analytic properties of the d-function. At the same time, the series (15)
has the following negative features: a) its behavior in the ultraviolet and infrared regions
is incorrect owing to large logarithms; b) its partial sum is not a renormalization-group
invariant and turns out to be µ-dependent. Fortunately, in quantum field theory, initial
perturbative expansions of the type (15) are not the final products of the theory and admit
an essential modification that can be realized on the basis of some general properties of
the theory. The renormalization-group method allows one to remove the µ-dependence of a
perturbative series and improve its behavior in the ultraviolet region by accumulating the
large logarithms in Eq. (15) into the running coupling. The RG-version of Eq. (15) is usually
written as

d(N)(Q2) =
N
∑

n=1

dn−1 ān(Q2) . (22)

1π2-terms can also be derived as a result of analytic continuation of the running coupling from

the Euclidean region into the physical one [29–31].
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The expansion coefficients, dn−1 ≡ dn,0, depend (with the exception of d0) on the scheme of
renormalization and on the number of active quark flavors. The running coupling ā(Q2) is
determined by the renormalization-group equation

ln
Q2

Q2
0

=
∫ ā(Q2)

ā(Q2
0
)

d a

β(a)
. (23)

Thus, the general principle of RG invariance allows one to improve the ultraviolet be-
havior and RG properties of perturbative expansions. However, the series so derived are,
as before, ill-defined in the infrared region, and moreover, the sole positive property of the
initial expansion (15) is lost. Now, the correct analytic properties of the series in the com-
plex Q2-plane are violated due to unphysical singularities of the running coupling ā(Q2),
and thus the connection between d and r given by relations (4) and (5) is destroyed.

In this connection, we note that, in principle, it is possible to use the d-function in the
form (22) in Eq. (5) and to represent the function r(s) as an expansion in the perturbative
running coupling ā(Q2). (Asymmetry of the d- and r-functions arises owing to the difference
of coefficients, dn 6= rn for n ≥ 3, caused by the π2-terms [30]). However, this trick, which
is often used for a description of processes with characteristic timelike momenta, is not self-
consistent. Indeed, if the function r(s) thus derived is substituted into equation (4), the
initial function d(Q2) used in finding r(s) cannot be reproduced. And moreover, the integral
in Eq. (4) will be divergent due to unphysical singularities of the perturbative invariant
charge.

Parametrization of r(s) as an expansion in the perturbative running coupling also leads
to the problem of direct calculation of the QCD contribution to Rτ -ratio according to Eq. (9),
since the region of integration covers the infrared region. It would seem that the transfor-
mation to the contour representation (10) allows one to avoid this difficulty, since in this
case unphysical singularities of the running coupling lie outside of the contour, and the
procedure of integration can formally be easily accomplished. However, in our opinion, this
trick (“sweeping the difficulty under the rug”) does by no means solve the problem (see
also Refs. [42,43]). Actually, incorrect analytic properties of the running coupling result in
Eqs. (9) and (10) for δτ being no longer equivalent [8]. For instance, in the leading order,
by comparing the two expressions (12) and (13) for the moments, we obtain the following
equality (s0 > Λ2, k ≥ 0):

1

2πi

∮

|z|=s0

dz

z

[

1−
(

z

s0

)k+1
]

1

ln(−z/Λ2)

= (k + 1)
∫ s0

0

ds

s0

(

s

s0

)k
[

1

2
−

1

π
arctan

ln(s/Λ2)

π
+ (−1)kΘ(Λ2 − s)

]

, (24)

where Θ is the Heaviside step function. Eq. (24) shows that if the running coupling is
taken to be given by the contour representation (13), one cannot reproduce any analog of
this running coupling in the initial expression (12) defined in the timelike region, since the
expression in brackets on the right-hand side of Eq. (24) contains k-dependence that should,
naturally, be absent in the running coupling.

The general origin of the above difficulties lies in the fact that the conventional RG
improvement leads to unphysical singularities of the invariant charge, violating the defi-
nite analytic properties required by the fundamental principles of the theory. Therefore,
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perturbative expansions require further modification to restore the analytic properties lost
upon the RG improvement. This step, made in the analytic approach in QCD [4], combines
the renormalization-group method with Q2-analyticity. (An analytic charge slightly different
from that proposed in Ref. [4] was considered in Refs. [44,45]; the method of a-expansion [46]
also ensures correct analytic properties.) In this paper, we use analytic perturbation theory
[8], in which not only are the above-mentioned analytic properties not violated, but also the
algorithm for calculating higher-loop approximations is well defined.

IV. ANALYTIC PERTURBATION THEORY

In the analytic approach [4], the basic object is a spectral function which enters into some
integral representation. In particular, for two-point functions, it is the Källén–Lehmann
representation; whereas for structure functions for inelastic lepton–hadron scattering, the
integral representation is that of Jost–Lehmann–Dyson. The spectral function for the objects
under consideration here can be obtained by using the perturbative series (22) as a initial
approach. Truncated at the three-loop level, the perturbative d-function is2

dpt(Q
2) = apt(Q

2) + d1a
2
pt(Q

2) + d2a
3
pt(Q

2) . (25)

In the MS scheme for three active quarks (nf = 3) relevant in τ decay, the expansion

coefficients are dMS
1 = 1.6398 and dMS

2 = 6.3710 [33,47].
The expansion (25) generates the following approximation to the spectral function:

ρ(σ) = %0(σ) + d1%1(σ) + d2%2(σ) , (26)

where the coefficients d1 and d2 are the same as in the PT series (25) and the expansion
functions are determined by the discontinuity of the corresponding power of the perturbative
coupling, %n(σ) = Im[an+1

pt (−σ−iε)]. By using the spectral function (26) in Eq. (6), we obtain
the d-function in the form of the expansion (not a power series in a)

dan(Q
2) = aan(Q

2) + d1∆
(2)
an (Q2) + d2 ∆(3)

an (Q2) , (27)

where the ∆(n)
an are analytic functions. The Euclidean running coupling aan(Q

2) and the
running coupling ãan(s) determined in the physical region are expressed through the function
%0(σ) as

aan(Q
2) =

1

π

∫ ∞

0

dσ

σ + Q2
%0(σ) , (28)

and

ãan(s) =
1

π

∫ ∞

s

dσ

σ
%0(σ) . (29)

2Hereafter, to distinguish the description in PT and APT approaches, we use subscripts “pt” and

“an”. We omit the bar over the running coupling a.
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It is sometimes suggested that the behavior of the invariant charge is symmetric between
the Euclidean (Q2 > 0) and physical (Q2 = −s < 0) regions. In other words, when
the spacelike and timelike arguments coincide in magnitude, Q2 = s, the corresponding
functions also coincide in magnitude. However, as was shown in Ref. [48] on the basis of
general principles of the theory, this assumption is not correct. Actually, these functions
have equal infrared limiting values and the same ultraviolet behavior (reflecting the property
of asymptotic freedom), but in the intermediate region they do not coincide.

In the leading order, the spectral function has the form

%
(1)
0 (σ) =

1

β0

π

ln2(σ/Λ2) + π2
, (30)

where β0 = (11− 2nf/3)/4. Substituting this expression into Eqs. (28) and (29), we obtain
explicit expressions for the invariant charges in the spacelike and timelike regions [4–7]

a(1)
an (Q2) =

1

β0

[

1

ln(Q2/Λ2)
+

Λ2

Λ2 −Q2

]

, (31)

ã(1)
an (s) =

1

β0

[

1

2
−

1

π
arctan

ln(s/Λ2)

π

]

. (32)

The expression in the Euclidean region (31) contains the usual logarithmic term that coin-
cides with the perturbation expression containing the ghost pole at Q2 = Λ2. The contribu-
tion of this pole is compensated by the second term in Eq. (31) of a power character in Q2.
Written in terms of the initial apt, this term is of the structure of exp(−1/apt) and therefore
makes no contribution to the power series expansion in the coupling apt. That is, the Q2-
power contribution in the Euclidean running coupling (31), invisible in perturbation theory,
is restored automatically on the basis of the analyticity principle. In contradistinction to
the perturbative running coupling apt(Q

2), the analytic function aan(Q
2) has no unphysical

singularities: the ghost pole and corresponding branch points (which appear in higher order)
are absent.

Regularity of the running coupling in the timelike region has another origin.3 When the
regular function (32) is expanded in a series in the singular perturbative coupling apt(Q

2) ∝
1/ ln(Q2/Λ2), the expansion will contain π2-terms. Thus, in the APT method the timelike
running coupling (32) sums up the π2-terms into a regular function. It is important to
note that the functions (31) and (32), in agreement with Eqs. (4) and (5), satisfy the same
relations as the spacelike and timelike functions d(Q2) and r(s):

Q2
∫ ∞

0

ds

(s + Q2)2 ãan(s) = aan(Q
2) , (33)

3The invariant charge in the timelike region should not be an analytic function, and the word

“regularity” does not mean analyticity (for a discussion, see Ref. [41]).
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−
1

2πi

∫ s+iε

s−iε

dz

z
aan(−z) = ãan(s) . (34)

In the framework of APT, there is little sensitivity to the approximation made in solving
the renormalization-group equation for the running coupling [8]. In principle, in constructing
APT, one can use the standard PT parametrization of the running coupling as an expan-
sion in inverse powers of L ≡ ln(Q2/Λ2) [14]. Then the derived expression for the APT
running coupling in the timelike region, ã(3)

an (s), has a rather simple form [49]. The APT
result for running couplings up to the third order can be written in terms of the Lambert
function [50,51]. In Fig. 1, the evolution of the QCD running coupling obtained in the
PT and APT approaches is compared. Having solved the three-loop RG-equation, we have
obtained the exact PT running coupling (dashed line), which was used for obtaining the
function %0(σ). The analytic running coupling aan(Q

2), Eq. (28), is shown as a solid line and
the APT timelike running coupling, Eq. (29), is shown as a dotted line. One can see that
at low energy scales the difference between the PT and APT Euclidean running coupling
becomes significant: instead of a rapidly changing function as occurs in the PT case, we get
a slowly changing function in the APT case (see Refs. [7,9] for more details). In the region of
sufficiently large timelike momenta, the well-known approximate formula with the π2-term,

ã = a− β2
0

π2

3
a3 , (35)

works well both for PT and APT approaches. In Fig. 1, the dash-dotted line represents the
three-loop PT running coupling calculated by using this formula.

V. τ-DECAY

The present experimental value of Rτ is known with an accuracy unprecedented for
low-energy hadronic processes: The averaged fit of the Particle Data Group 2000 [14] is
Rτ = 3.646 ± 0.022 and the combined experimental result of the TAU 2000 Workshop is
Rτ = 3.640± 0.010 [17]. However, the value of αs extracted from those data at the τ mass
scale has a quite large error dominated by the theoretical uncertainty of QCD calculations.
For example, the ALEPH Collaboration analysis gives the value αs(Mτ ) = 0.334±0.007expt±
0.021theor [15] in which the theoretical uncertainty is three times larger than the experimental
one. It might be supposed that the large theoretical uncertainty is connected to a poorly
known nonperturbative contribution. However, estimates show that the nonperturbative
contribution is rather small and compatible with zero: δnp = −0.003 ± 0.004 [15,18]. The
chief uncertainty arises from the use of the conventional perturbative approximation.

The application of perturbation theory to the description of inclusive τ -decay was devel-
oped in two directions. The approach given in Ref. [28], usually called FOPT (fixed-order
perturbation theory), leads to a representation of the physical quantity Rτ as an expansion
in powers of the running coupling at Q2 = M2

τ . The three-loop perturbative approximation
to δτ in Eq. (8) reads as follows:

δτ = apt

(

M2
τ

)

+ K1 a2
pt

(

M2
τ

)

+ K2 a3
pt

(

M2
τ

)

. (36)
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The coefficients calculated in the MS scheme for three active quarks are K1 = 5.2023 and
K2 = 26.366 [27,33]. Note here that the π2-contribution dominates in the second coefficient
K2.

If the function dpt in the form of the expansion (25) is substituted into the contour integral
(10), one obtains the following expression [52], which is not a power series expansion in apt:

δτ = A(1)
(

M2
τ

)

+ d1 A(2)
(

M2
τ

)

+ d2 A(3)
(

M2
τ

)

, (37)

where

A(n)
(

M2
τ

)

=
1

2πi

∮

|z|=M2
τ

dz

z

(

1−
z

M2
τ

)3 (

1 +
z

M2
τ

)

an
pt(−z) . (38)

This result is called the contour-improved fixed-order perturbation theory, FOPTCI.
Both these approaches, FOPT and FOPTCI, are widely used in the analysis of τ -decay

data and this ambiguity in the perturbative description has an influence on the accuracy of
theoretical predictions. Let us discuss the status of both approaches. First of all, we will
emphasize that if the method of calculation is consistent with the correct analytic properties
of the function d(Q2), both representations (9) and (10) are equivalent. This means that if
we use the initial perturbative expansions of the functions r(s) and d(Q2), Eqs. (16) and (15)
respectively, before the renormalization-group resummation [that is, their representations in
perturbation theory with the expansion parameter a(µ2), containing the correct analytic
properties of the function d(Q2) in any partial sum of the series], we find that the initial
expression (9) and the contour representation (10) give the same result

δτ = apt(µ
2) r1,0 + a2

pt(µ
2)

[

(

r2,0 −
19

12
r2,1

)

+ r2,1 ln

(

M2
τ

µ2

)]

(39)

+ a3
pt(µ

2)

[

(

r3,0 −
19

12
r3,1 +

265

72
r3,2

)

+
(

r3,1 −
19

6
r3,2

)

ln

(

M2
τ

µ2

)

+ r3,2 ln2

(

M2
τ

µ2

)]

.

The representation δτ as an expansion in powers of a(M 2
τ ) can be derived from Eq. (39), if

the renormalization group is applied, replacing there µ2 = M2
τ . The contour representation,

Eq. (37), in which the perturbative running coupling enters the complex contour integration,
is not admissible, since unphysical singularities of the invariant charge break the connection
between the contour representation and the initial expression (9). This can be observed from
the expression δτ in terms of the moments (11) and the equality (24) in which to preserve
the sign of the equality, one cannot neglect the contribution from the Θ function on the
right-hand side. Note that it may appear that the contour representation can be obtained
in the following way. As a first step, one passes to a representation in terms of a contour
integral using approximations with the expansion parameter a(µ2) that do not destroy the
analytic properties necessary for this transformation. In the next step, instead of the above
procedure in which we put µ2 = M2

τ (taking the value of the subtraction point equal to a
fixed external parameter Mτ ) we take, prior to the evaluation of the contour integral, the
quantity µ2 to be a complex variable over which integration is carried out. But one must
recall here that the procedure of renormalization where the idea of the subtraction arises is
such that the value of µ2 cannot be arbitrary. Complex values of this parameter spoil the
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Hermiticity of the renormalized Lagrangian, leading to serious difficulties, and should be
eliminated from further consideration. Thus, the complex representation of δτ in the form
FOPTCI (37) with the standard running coupling [14] containing unphysical singularities is
self-contradictory. Applying it in the analysis of experimental data on the τ -lepton decay,
which is a low energy timelike process, is not valid and cannot provide reliable information
on perturbative and nonperturbative QCD parameters.4 Despite the above difficulties, due
to its more stable behavior with respect to higher-loop terms and scheme dependence, the
FOPTCI series has been widely used in probing nonperturbative effects.

The analytic approach discussed in the previous section provides the analytic properties
necessary for the equivalence of the initial and contour representations, Eqs. (9) and (10),
respectively. Within the framework of the APT approach, both forms can be rewritten in
terms of the spectral function ρ(σ) as [8]

δτ =
1

π

∫ ∞

0

dσ

σ
ρ(σ)−

1

π

∫ M2
τ

0

dσ

σ

(

1−
σ

M2
τ

)3 (

1 +
σ

M2
τ

)

ρ(σ) . (40)

Besides yielding the correct analytic properties, the APT approach provides a remarkable
loop stability not only in the ultraviolet region but also at low-energy scales. This stability
is connected to the stability of the analytic running coupling, for which a maximal difference
between the one- and two-loop approximations at small Q2 does not exceed 8 %; whereas
the three-loop approximation differs from the two-loop one by less than 1 % [4,5].

In Fig. 2, we illustrate the dependence of Rτ on the running coupling α = πa(M 2
τ ) in the

FOPT and APT approaches comparing the convergence properties in the one-loop (dotted
lines), two-loop (dashed lines), and three-loop (solid lines) approximations. Numbers above
the curves specify the order of the PT approximation. The shaded area shows the corridor
of experimental errors and corresponds to Rexpt

τ = 3.646 ± 0.022 [14]. Fig. 2 demonstrates
the loop stability of APT results as compared to PT.

A similar analysis of the perturbative contribution to inclusive τ -decay has been pre-
sented in Ref. [53]. The authors of that paper claimed that to describe the experimental
data for τ -decay the value of αan(M

2
τ ) should be taken in the range of 1.5–2.0. This con-

clusion contradicts our result. Fig. 2 clearly demonstrates that in order to reproduce the
experimental data such large values of αan(M

2
τ ) are not required. Moreover, in the APT

approach, the value of the analytic running coupling αan(Q
2) is bounded from above and

cannot exceed the infrared limiting value αan ≤ π/β0 ' 1.4 [4]. Beyond this, in Ref. [53],
it was noted that this impossibly large value αan(M

2
τ ) corresponds to αs(M

2
Z) ' 0.15. We

remark that in order to obtain the value of αs at the Z-boson mass scale, the region of five
active quarks should be approached by applying a special procedure of matching from the
three-quark region [7,10]. Corresponding estimates have been given in Ref. [21].

In Ref. [53] it was emphasized that the merit of the contour representation is that it
produces expressions for quantities in the physical region that are not expansions in the

4In this connection, we note that the conclusions of the authors of Ref. [53] obtained on the basis

of the contour representation are far from being justified.
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parameter π/ ln( s/Λ2), which is not a small quantity in the intermediate energy region. In
particular, one can write the formula (see Eq. (11) from [53]):

2π ImΠ(s + i0) = 1 +
1

πβ0

[

π

2
− arctan

(

1

π
ln

s

Λ2

)]

. (41)

Although we agree with the authors of Ref. [53] that it is important to sum up the π2-terms
in the region of intermediate energies,5 and that it is preferable to use the expression which
sums up the π2-contributions rather than the asymptotic expression ∝ 1/ ln(s/Λ2) for the
bracketed quantity in Eq. (41), we note the following: Expression (41) unambiguously leads
to an analytic charge that corresponds to the first QCD contribution in the D-function
expansion. Indeed, substituting Eq. (41) into Eq. (3), we obtain D(Q2) ∝ 1 + a(1)

an (Q2),
where the one-loop analytic coupling is defined by Eq. (31). So, we conclude that the an-
alytic approach provides a consistent form of expressions of the type (41) in the timelike
region, whose evident advantage is the summation of the π2-contributions into a regular
function, and provides the resulting corresponding analytic expressions for the D-function
in the spacelike region, where unphysical singularities are cancelled by functions of a non-
logarithmic type vanishing in a perturbative expansion. In other words, summation of the
π2-contributions in the s-channel produces power (nonlogarithmic in Q2) contributions in
the t-channel that regulate the analytic properties by compensating unphysical singularities
in the logarithmic terms.

A significant source of theoretical uncertainty arises from the renormalization scheme
(RS) dependence of the results obtained due to the inevitable inclusion of only a finite
number of terms in the PT series. In QCD, that uncertainty is the greater, the smaller the
value of the energy typical of the process. There are no general principles that give preference
to a particular renormalization scheme, and in this sense, all such schemes are equivalent.
The APT method improves this situation and gives very stable results over a wide range of
renormalization schemes, and at the three-loop level (the level of theoretical calculation for
many physical processes at present) can give results with a theoretical uncertainty connected
with a finite approximation order significantly smaller than in the standard method.

In passing from one renormalization scheme to another, the coupling constant is trans-
formed as follows

a′ = a (1 + v1a + v2a
2 + · · ·) . (42)

At the three-loop level, one can obtain the running coupling as a solution to the RG equation
with the three-loop β-function

β(a) = µ2 ∂ a

∂ µ2
= −β0 a2 (1 + b1a + b2a

2) , (43)

5Moreover, a correct use of the π2-terms when processing the experimental data in the timelike

region turns out to be important also in the traditional asymptotic region of order of several tens

of GeV and higher [34].
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where the three-loop coefficient b2 is scheme-dependent. The values of the coefficients eval-
uated for nf = 3 are β0 = 4.5, b1 = 1.778, and bMS

2 = 4.471.
The expansion coefficients d1 and d2 in Eq. (25) are also RS dependent. When passing

to a new scheme, the coefficients b2, d1, and d2 are transformed as follows:

b′2 = b2 − v2
1 − b1v1 + v2 ,

d′1 = d1 − v1 , (44)

d′2 = d2 − 2(d1 − v1)v1 − v2 .

Thus, we arrive the new d-function

d′ = a′ (1 + d′1a
′ + d′2a

′2) , (45)

where the constant a′ is computed with the new β-function in which the three-loop coefficient
b2 is replaced by the primed one b′2.

Taking into account the transformation law of the scale parameter Λ [54] and Eqs. (44),
one can obtain the following two scheme invariants (see [35])

ω1 = β0 ln
Q2

Λ2
− d1 , (46)

ω2 = b2 + d2 − b1d1 − d2
1 . (47)

The first invariant contains the entire momentum dependence, and the second invariant is
just a number whose value is determined by the process under consideration. Although
there are no arguments of a general character that would allow us to decide between any
two different RS, one can determine a class of “natural” schemes that look reasonable at the
three-loop level. The corresponding criterion has been proposed in Ref. [55]. It consists in
requiring that one should be restricted to those schemes for which the cancellations between
terms in the second scheme-invariant (47) are not too large. Quantitatively, a criterion of
that sort can be specified with the cancellation index

C =
1

|ω2|

(

|b2|+ |d2|+ d2
1 + |d1| b1

)

. (48)

Choosing a certain maximal value of the cancellation index Cmax that establishes the limit
for the class of admissible schemes, one can investigate the stability of the result by exam-
ining all schemes with an index C ≤ Cmax. For instance, for Cmax one can take the index
corresponding to the PMS. In this case, we have a relatively narrow class of allowed schemes
that are determined by the maximal cancellation index CPMS ' 2.

The RS dependence of perturbative results has been considered in numerous papers. For
τ -decay it has been investigated, for example, in Refs. [36,56]. Abundant experimental data
accumulated in measurements of the hadronic decay modes of the τ -lepton allow one not only
to analyze such a “global” quantity as Rτ , but also to construct various characteristics of this
process determined for the timelike and spacelike regions with high accuracy. In particular,
for comparisons of theoretical results with experiment it turns out to be convenient to use
the function D(Q2), see Refs. [57–59]. Here we discuss the problem of the RS dependence
of the theoretical predictions for the light D-function [49].
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In Fig. 3 we plot the behaviors of the QCD contribution to the D-function, d(Q2), in
different RS. It is seen that predictions in the perturbative approach for d(Q2) obtained
within different RS diverge considerably as early as the value Q ' 2 GeV (see dashed curves
A and B). Note should be made of the fact that the schemes A and B are similar to each
other and to the optimal PMS and ECH schemes in the sense of the cancellation index:
CA ' CB ' 2. For the ECH method, the cancellation index is minimal, equaling unity.
The cancellation index for the MS scheme turns out to be somewhat bigger, CMS ' 3.1.
In Fig. 3, we also draw the curves representing perturbative results in the PMS, ECH, MS
and K schemes.6 As seen from Fig. 3, the dispersion of the PT results obtained in the
above-mentioned schemes is significant. For the same schemes, in Fig. 3 we also present
results obtained in the APT approach. There the scheme arbitrariness is extremely small,
and all the curves corresponding to the schemes A, B, PMS, ECH, MS, and K calculated in
APT merge into one thick solid curve. Thus, in the APT, the scheme arbitrariness is very
dramatically reduced as compared with that in analogous PT calculations.

VI. CONCLUSIONS

Perturbation theory is a basic tool of quantum field theory calculations. The structure
of an initial perturbative approximation of some quantity is not a rigid construction fixed
once and for all, as it is, for example, in simple classical and quantum-mechanical problems,
but admits a considerable modification due to specific properties of quantum field theory.
Such modification is based on further information of a general character about the sum
of the series. In particular, the properties of renormalization invariance, which is lost in
a finite order of the initial expansion, allow rearrangements of the perturbative series in
terms of the invariant charge. In this case, the properties of the series change essentially.
In distinction to the initial expression containing large logarithms, the expansion obtained
within the renormalization-group method can be used for analyzing the ultraviolet region.
However, in doing so, the analytic properties are lost, because the perturbative running
coupling possesses unphysical singularities in the infrared region. The difficulty associated
with these unphysical singularities is overcome in the APT approach. In a new modified
perturbation theory the correct analytic properties, lost in the renormalization-group sum-
mation, are restored, and the property of renormalization invariance is preserved. In the
analytic approach, processes with typical spacelike and timelike momenta are considered
self-consistently. The expansion in APT is not a power series in the running coupling either
in the spacelike or the timelike region, and its properties, compared to those of the initial
perturbative expansion, change not only in the ultraviolet region but also in the infrared
region. Thus, the analytic approach is the next step in the renormalization-group method:
it modifies the perturbative expansion on the basis of general properties of the theory so
that the new approximations reflect fundamental principles of the theory—renormalization
invariance, spectrality, and causality.

6The K scheme [60] is interesting in that there is a fixed point for the three-loop running coupling

(CK ' 5.3 ).
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In this paper, a comparative analysis of the merits and drawbacks has been made for
different forms of the perturbative expansions both in general aspects and in the context
of the application to the inclusive decay of the τ -lepton. In the description of this process,
the perturbative component is, despite the low-energy scale of the process, decisive. Also,
arguments are given in favor of analytic perturbation theory, which is consistent with general
principles of the theory. As we have emphasized, the decay of the τ -lepton can be described
in terms of timelike or Euclidean variables. In the analytic approach, these two descriptions
are equivalent. Moreover, in the analytic perturbation theory, the dependence of the cal-
culated results on the choice of renormalization procedure is dramatically reduced. In the
class of natural schemes, we can say that the results at third order are practically indepen-
dent of the renormalization scheme. Calculations in the framework of analytic perturbation
theory considerably reduce the theoretical uncertainty of the results. Use of analytic per-
turbation theory to describe the perturbative component of the process should increase the
reliability in obtaining information about nonperturbative effects. The above properties of
analytic perturbation theory are attractive also for comparison of theoretical results with
experimental data on τ -decay, known at present with high accuracy.

ACKNOWLEDGMENTS

The authors is grateful to D.V. Shirkov and A.N. Sissakian for interest in this work. We
also thank S. M. Mikhailov and I.L. Solovtsov for useful discussions. Partial support of the
work by the U.S. Department of Energy, grant number DE-FG03-98ER41066, and by the
RFBR, grants 99-01-00091 and 99-02-17727, is gratefully acknowledged.

16



REFERENCES

[1] N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley,
New York, 1959 and 1980).

[2] P. Redmond, Phys. Rev. 112 (1958) 1404; P. Redmond, J.L. Uretsky, Phys. Rev. Lett.
1 (1958) 147.

[3] N.N. Bogolyubov, A.A. Logunov, D.V. Shirkov, Soviet Phys. JETP 37 (1959) 805.
[4] D.V. Shirkov, I.L. Solovtsov, JINR Rap. Comm. 2 (1996) 5; Phys. Rev. Lett. 79 (1997)

1209.
[5] I.L. Solovtsov, D.V. Shirkov, Theor. Math. Phys. 120 (1999) 1220.
[6] K.A. Milton, I.L. Solovtsov, Phys. Rev. D 55 (1997) 5295.
[7] K.A. Milton, O.P. Solovtsova, Phys. Rev. D 57 (1998) 5402.
[8] K.A. Milton, I.L. Solovtsov, O.P. Solovtsova, Phys. Lett. B 415 (1997) 104.
[9] K.A. Milton, I.L. Solovtsov, O.P. Solovtsova, Phys. Rev. D 60 (1999) 016001.

[10] D.V. Shirkov, Theor. Math. Phys. 119 (1998) 438; Theor. Math. Phys. 127 (2001) 409.
[11] I.L. Solovtsov, Particles and Nuclei, Letters 4 (2000) 10.
[12] N.G. Stefanis, W. Schroers, H.-Ch. Kim, Eur. Phys. J. C 18 (2000) 137.
[13] A.I. Karanikas, N.G. Stefanis, Phys. Lett. B 504 (2001) 225.
[14] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15 (2000) 1.
[15] ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C 4 (1998) 409.
[16] OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C 7 (1999) 571.
[17] S.H. Robertson, Charged Current Review, in: R.J. Sobie and J.M. Roney, eds., Proc.

TAU 2000 , Nucl. Phys. B (Proc. Suppl.) 98 (2001) 67.
[18] A. Pich, Tau Physics: Theoretical Perspective, in: R.J. Sobie and J.M. Roney, eds.,

Proc. TAU 2000 , Nucl. Phys. B (Proc. Suppl.) 98 (2001) 385.
[19] G. Altarelli, P. Nason, G. Ridolfi, Z. Phys. 68 (1995) 257.
[20] M. Neubert, Nucl. Phys. B 463 (1996) 511.
[21] K.A. Milton, I.L. Solovtsov, O.P. Solovtsova, V.I. Yasnov, Eur. Phys. J. C 14 (2000)

495.
[22] J.G. Körner, F. Krajewski, A.A. Pivovarov, Phys. Rev. D 63 (2001) 036001.
[23] S. Peris, B. Phily, E. de Rafael, Phys. Rev. Lett. 86 (2001) 14.
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FIG. 1. Comparison of the three-loop running coupling in the PT and APT approaches. Here

the solid line shows the analytic coupling in the spacelike region and the dotted line the ana-

lytic coupling in the timelike region. The dashed line gives the perturbative coupling, while the

dotted-dashed line shows the effect of including the π2 correction in the PT approach.
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FIG. 2. The PT and APT predictions for the Rτ ratio vs. the running coupling in the MS

scheme. The numbers labelling the curves denote the level of the loop expansion used.
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FIG. 3. Renormalization scheme dependence of the d-function as a function of Q2 for the PT

and APT approaches. The APT results are shown as solid lines which are very close to each other

and practically merge into one curve.
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