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Doubt continues to linger over the reality of quantum vacuum energy. It has been suggested that
fluctuating fields may not gravitate, or may do so anomalously. Here we show that for the simple
case of parallel conducting plates, the associated Casimir energy gravitates just as required by the
equivalence principle, and that therefore the inertial and gravitational masses of a system possessing
Casimir energy Ec are both Ec/c2. This simple result disproves recent claims in the literature. We
clarify some pitfalls in the calculation that can lead to spurious dependences on coordinate system.
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The subject of quantum vacuum energy (the Casimir
effect) dates from the same year as the discovery of renor-
malized quantum electrodynamics, 1948 [1]. It puts the
lie to the naive presumption that zero-point energy is
not observable. On the other hand, it continues to be
surrounded by controversy, in large part because sharp
boundaries give rise to divergences in the local energy
density near the surface (see Refs. [2, 3] and more re-
cently Refs. [4, 5]). The most troubling aspect of these
divergences is in the coupling to gravity. Gravity has its
source in the local energy-momentum tensor, and such
surface divergences promise serious difficulties.

As a prolegomenon to studying such issues, we here ad-
dress a simpler question: How does the completely finite
Casimir energy of a pair of parallel conducting plates cou-
ple to gravity? The question turns out to be surprisingly
less straightforward than one might suspect! Previous
authors [6–10] have given disparate answers, including
gravitational forces, or gravitationally modified Casimir
forces, that depend on the orientation of the Casimir
apparatus with respect to the gravitational field of the
earth. There are even suggestions that virtual (fluctuat-
ing) fields do not gravitate at all [11, 12]. We will here
resolve some of this confusion with a convincingly cal-
culated result consistent with the equivalence principle.
That is, the renormalized Casimir energy couples to grav-
ity just like any other energy. In our opinion, this fact is
evidence that vacuum energy must be taken seriously in
gravitational theory and that the problem of boundary
divergences must be resolved by a better understanding
of the modeling and renormalization processes.

We start by reminding the reader of the electromag-
netic Casimir stress tensor between a pair of parallel per-
fectly conducting plates separated by a distance a, as
given by Brown and Maclay [13]:

〈T µν〉 =
Ec

a
diag(1,−1,−1, 3), (1)

where the third spatial direction is the direction normal

to the plates. This is given in terms of the Casimir en-
ergy per unit area, Ec = −π2

~c/(720a3). Outside the
plates, 〈T µν〉 = 0. Omitted here is a constant divergent
term that is present both between and outside the plates,
and also in the absence of plates, which cannot have
any physical significance. Because the electromagnetic
field respects conformal symmetry, there is no surface di-
vergent term such as is present for a minimally coupled
scalar field subject to Dirichlet conditions on the plates,
or more generally for curved surfaces [14]. (Henceforth
we will set ~ = c = 1.)

Now we turn to the question of the gravitational in-
teraction of this Casimir apparatus. It seems to us that
this question can be most simply addressed through use
of the gravitational definition of the energy-momentum
tensor,

Wg ≡ δWm ≡ 1

2

∫

(dx)
√−g δgµνT µν . (2)

Following Schwinger (note the factor of 2 in the defini-
tion), for a weak field we define gµν = ηµν +2hµν. To first
order we can ignore

√−g. The gravitational energy, for
a static situation, is therefore given by (δW ≡ −

∫

dt δE)

Eg ≡ δEm = −
∫

(dx)hµνT µν . (3)

We then replace T µν here by the one-loop expectation
value of the electromagnetic stress tensor (1).

Calloni et al. [7] and Bimonte et al. [10] use the Fermi
metric

g00 = − (1 + 2gz) , gij = δij , (4)

in terms of the gravitational acceleration g. This is evi-
dently appropriate for a constant gravitational field. We
will discuss its relation to the field due to the earth below.
Consider a Casimir apparatus of parallel plates separated
by a distance a, with transverse dimensions L ≫ a. Let
the apparatus be oriented at an angle α with respect to
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FIG. 1: Relation between two Cartesian coordinate frames:
One attached to the earth (x, y, z), where −z is the direction
of gravity, and one attached to the parallel-plate Casimir ap-
paratus (ζ, η, χ), where ζ is in the direction normal to the
plates. The parallel plates are indicated by the heavy lines
parallel to the η axis. The x = χ axis is perpendicular to the
page.

the direction of the gravitational field. The Cartesian
coordinate system attached to the earth is denoted by
(x, y, z), where, as noted above, z is the direction of −g.
The Cartesian coordinates associated with the Casimir
apparatus are (ζ, η, χ), where ζ is normal to the plates,
and η and χ are parallel to the plates. (See Fig. 1.) The
center of the apparatus is located at (ζ0 , η = 0, χ = 0).

Now we calculate the gravitational energy from Eq. (3):

Eg =

∫

(dx) gzT 00 =
gEc

a
L2a ζ0 cosα, (5)

up to an additive constant, independent of ζ0 . (Any
constant added to the gravitational potential gz simply
shifts the value of this constant.) Thus, the gravitational
force per area A = L2 on the apparatus is

F

A
= − 1

A

∂Eg

∂z0

= −gEc ≡ − ǫ

2a
Ec , (6)

because z0 = ζ0 cosα. Note that on the earth’s surface,
the dimensionless number ǫ ≡ 2ga/c2 is very small. For a
plate separation of 1µm, ǫ = 2× 10−22, so the considera-
tions here may be only of theoretical interest. (However,
Calloni et al. [7] discuss the possibility of experimentally
observing this force.)

It is a bit simpler to use the energy formula (3) to
calculate the force by considering the variation in the
gravitational energy directly, that is,

δEg = −
∫

(dx) δhµνT µν. (7)

It is easy to verify that this gives the correct force on a
mass point, F = mg. If we use this formula to calcu-
late the gravitational force per area on the rigid Casimir
apparatus, by considering a virtual displacement upward
by an amount δz0, we find the same α-independent result
found in Eq. (6).

Alternatively, we can start from the definition of the
gravitational field [15],

δWg =

∫

(dx) δT µνhµν , (8)

which can again be checked to yield the correct force on
a mass point. For the constant field (4) the force on a
Casimir apparatus is obtained from the change in the
energy density T 00; that is, recalling that z0 = ζ0 cosα,

δT 00 =
Ec δz0

a

1

cosα
[δ(ζ−ζ0−a/2)−δ(ζ−ζ0+a/2)], (9)

where the δ functions arise from the step functions at the
boundaries. This yields from Eq. (8) the same result (6).

Our answer is consistent with the principle of equiva-
lence, and with the second analysis of Jaekel and Rey-
naud [16], who state that the inertia of Casimir energy
(at least in two dimensions) is Ec/c2. However, it is only
1
4

that found by Bimonte et al. [10], which is also the
first force formula [Eqs. (7) and (8)] provided by Cal-
loni et al. [7]. Our Eq. (6) does, however, reproduce the
second formula [Eq. (9)] given in Ref. [7], which those
authors describe as the one that should be observable.
We discuss this situation further below.

We now digress to consider whether the constant-
field approximation (4) is adequate for an apparatus
suspended above the earth or some other pointlike
mass. Should we instead use the perturbation of the
Schwarzschild metric? One might expect that the result-
ing curvature corrections are of order L

R ≪ 1, at worst,
relative to the main term, where R is the earth’s radius.
The point, however, is that naive attempts to do the cal-
culation in curved space change the answer by factors like
2, and also differ among themselves, and the resolutions
of the fallacies are sufficiently instructive to justify our
belaboring the point.

The Schwarzschild metric in isotropic coordinates [17]
and for weak fields (GM/r ≪ 1) is

ds2 = −
(

1 − 2GM

r

)

dt2 +

(

1 +
2GM

r

)

dr2. (10)

If we expand a short distance z above the earth’s sur-
face, we find the nonzero components of the gravitational
field to be h00 = h11 = h22 = h33 = GM/R − gz, in
terms of the acceleration of gravity, g = GM/R2. (It
is important to recognize that the constant GM/R is ir-
relevant in the following, and that correspondingly the
results do not depend on the origin of z.) The virtue
of isotropic coordinates is that the spatial line element
(apart from an overall factor) has the usual Cartesian
form dr2 = dx2 + dy2 + dz2. Now when we compute the
gravitational energy from Eq. (7) each component of the
Casimir stress tensor contributes with equal weight:

δEg = gA δz0

∫ ζ0+a/2

ζ0−a/2

dζ (T 00 + T 11 + T 22 + T 33), (11)
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which gives the force

− 1

A

δEg

δz0

=
F

A
= −2gaT 00 = −2gEc , (12)

since T = T λ
λ = 0. This is twice the previous result (6).

Note that again the result is independent of α. The same
result is obtained if we start from Eq. (8).

We should be able to obtain the same result using
the original Schwarzchild coordinates, where h00 = −gz,
hρρ = −gz, and all other components of hµν are zero.
However, now if we use the first method (7), the result
is F/A = −4gEc cos2 α, so now the force depends on the
orientation of the apparatus. Even if α = 0, the magni-
tude differs from Eq. (12) by an additional factor of 2.

(It thereby fortuitously agrees with the result in Ref. [10]
for that angle.)

What is going on here? The reason we get differ-
ent answers in different coordinate systems is that our
starting point (3) is not gauge-invariant. Under a co-
ordinate redefinition, which for weak fields is a gauge
transformation of hµν [15], hµν → hµν + ∂µξν + ∂νξµ ,
where ξµ is a vector field, Eq. (3) is invariant only if
the stress tensor is conserved, ∂µT µν = 0 (in the weak-
field context). Otherwise, there is a change in the action,
∆W = −2

∫

(dx)ξν∂µT µν . Now in our case (where we
make the finite size of the plates explicit, but ignore edge
effects on T µν because L ≫ a)

T µν =
Ec

a
diag(1,−1,−1, 3)θ(ζ − ζ0 + a/2)θ(a/2 − ζ + ζ0)θ(η + L/2)θ(L/2− η)θ(χ + L/2)θ(L/2− χ). (13)

Taking the divergence of Eq. (13) gives corresponding δ functions on the surfaces and leads immediately to the change
in the energy obtained from ∆W as

∆Eg =
6Ec

a

∫

dηdχ [ξζ(ζ0 − a/2, η, χ)− ξζ(ζ0 + a/2, η, χ)] − 2Ec

a

∫

dζdχ [ξη(ζ,−L/2, χ) − ξη(ζ, L/2, χ)] − (η ↔ χ).

(14)

This transformation entirely accounts algebraically for
the difference between the force in isotropic and
Schwarzchild coordinates, but it does not yet explain
physically why there are two different answers, nor tell
us which, if either, is correct.

There seem to be two possible ways to proceed. First,
it is clear that the energy-momentum tensor of the com-
plete physical situation must be conserved, and there-
fore the expression (3) would be gauge-invariant if we
included a physical mechanism holding the plates apart
against the Casimir attraction. That road probably leads
to complicated, model-dependent calculations. The al-
ternative is to find a physical basis for believing that one
coordinate system is more realistic than another. Fortu-
nately, that problem apparently has a natural solution.
The crux of the difficulty is that the relations between co-
ordinate increments and physical distances depend upon
the distance from the gravitating center in the most com-
mon coordinate systems.

Of course, a perfect coordinate system is not possible
in a curved space, but the kind that comes closest to rep-
resenting distances accurately all along a timelike world-
line is a Fermi coordinate system, the general-relativistic
extrapolation of an inertial coordinate frame. Such a
system has been given by Marzlin [18] for a resting ob-
server in the field of any static mass distribution. Here we
give a simple rederivation for the case at hand. Starting
from the isotropic metric (10), first eliminate the con-

stant term by rescaling the coordinates, t →
(

1 + GM
R

)

t,

r →
(

1 − GM
R

)

r, and expand to first order:

ds2 = −(1 + 2gz)dt2 + (1 − 2gz)dr2. (15)

But we need r to measure physical displacements even
when z 6= 0, so we write

x = x′ + gx′z′, y = y′ + gy′z′,

z = z′ + g
2
(z′2 − x′2 − y′2). (16)

Then to first order in coordinates we obtain the Fermi
metric (4):

ds2 = −(1 + 2gz)dt2 + dr′
2
. (17)

The corresponding gravitational force is therefore given
by Eq. (6), after all!

Now we can use the method described above to trans-
form the energy in isotropic coordinates to that in Fermi
coordinates. We use Eq. (14) to compute the additional
gravitational energy, in terms of the gauge field ξµ that
carries us from isotropic coordinates to Fermi coordi-
nates,

hF
µν = hI

µν + ∂µξν + ∂νξµ . (18)

Here hI
00 = −gz, hI

ij = −gzδij , hF
00 = −gz, hF

ij = 0,
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hI,F
0i = 0. The gauge field turns out to be

ξζ =
1

2
g

(

1

2
ζ2 cosα + ζη sin α

)

+ f(η, χ),

ξη =
1

2
g

(

ζη cosα +
1

2
η2 sin α

)

+ g(ζ, χ),

ξχ =
1

2
g (ζ cosα + η sinα) χ + h(ζ, η), (19)

where the functions f , g, and h are irrelevant. Now from
Eq. (14) we obtain a ∆Eg(z0) that yields an additional
force, ∆F/A = gEc . When this is added to the isotropic
force (12), we obtain

F I + ∆F

A
= −2gEc + gEc = −gEc =

FF

A
, (20)

as given in Eq. (6).
The conceptual reason why other coordinates give dif-

ferent answers is that under the virtual displacement in-
volved in defining ∂

∂z0

one is stretching the apparatus as
well as moving it. Correcting for the spurious changes in
L and a restores the Fermi result in all cases. The im-
portance of distinguishing a from the physical gap was
noted by Sorge [9] in studying a related problem.

As noted above, Calloni et al. [7] find a result 4 times
ours, which is the only result from Ref. [7] cited in the
later paper [10] with which it shares authors. How-
ever, Ref. [7] states that that force formula has two
parts, in the ratio of 3/1, and that only the smaller
piece is “Newtonian,” or “to be tested against observa-
tion.” Our understanding of what that means is the
following. Start from Eq. (2) and consider a general
coordinate transformation, x′µ = xµ + δxµ, so that
g′µν(x′) = gµν(x) + δgµν(x), where

δgµν = δxλ∂λgµν + gαν
∂δxα

∂xµ
+ gµβ

∂δxβ

∂xν
. (21)

For a rigid translation, δxλ is a constant, so only the first
term in Eq. (21) is present, which gives the result (6).
However, if we do not make this restriction, we obtain
from Eq. (2) (after integration by parts) a surface-term
correction to the force:

∫

Ω

(dx)
√−gfλ =

δWm

δxλ
−

∫

∂Ω

dΣν

√−gT ν
λ , (22)

where the force vector density is [7]

√−gfλ = −∂ν

(√−gT ν
λ

)

+
1

2

√−gT µν∂λgµν . (23)

Note that the surface term identically cancels the first
term in fλ . Now if Ω refers to all space, the surface
term vanishes (as we have shown explicitly). But if Ω
is just the space volume between the plates, and we in-
clude this correction for the Fermi metric (4) for which

√−g = 1+gz, we obtain an additional term −3gEc cosα.
Adding this to the previous result (6), we obtain the re-
sult of Ref. [10] if α = 0. However, in general the result
depends on the angle between the apparatus and the ver-
tical. Is this consistent with the equivalence principle
(the scalar nature of mass)? A similar angle dependence
will now occur with the isotropic Schwarzchild metric.
Why should one trust the formula (23) over the more
fundamental variational principle when boundaries are
present? Omission of the surface term resolves the dis-
crepancy, giving the equivalence-principle result (6).
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