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Abstract

If quantum fields exist in extra compact dimensions, they will give rise to a

quantum vacuum or Casimir energy. That vacuum energy will manifest itself

as a cosmological constant. The fact that supernova and cosmic microwave

background data indicate that the cosmological constant is of the same order

as the critical mass density to close the universe supplies a lower bound on

the size of the extra dimensions. Recent laboratory constraints on deviations

from Newton’s law place an upper limit. The allowed region is so small as to

suggest that either extra compact dimensions do not exist, or their number is

about to be tightly constrained by experimental data.
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It has been appreciated for many years that there is an apparently fundamental conflict
between quantum field theory and the smallness of the cosmological constant [1]. This
is because the zero-point energy of the quantum fields (including gravity) in the universe
should give rise to an observable cosmological vacuum energy density,

ucosmo ∼
1

L4
Pl

, (1)

where the Planck length is

LPl =
√

GN = 1.6× 10−33 cm. (2)

(We use natural units with h̄ = c = 1. The conversion factor is h̄c ' 2 × 10−14 GeVcm.)
This means that the cosmic vacuum energy density would be

ucosmo ∼ 10118 GeVcm−3, (3)

which is 123 orders of magnitude larger than the critical mass density required to close the
universe:

ρc =
3H2

0

8πGN

= 1.05× 10−5h2

0
GeVcm−3, (4)

in terms of the dimensionless Hubble constant, h0 = H0/100 km s−1Mpc−1. From relativistic
covariance the cosmological vacuum energy density must be the 00 component of the expec-
tation value of the energy-momentum tensor, which we can identify with the cosmological
constant:

〈T µν〉 = −ugµν = −
Λ

8πG
gµν. (5)

[We use the metric with signature (−1, 1, 1, 1).] Of course this is absurd with u given by
Eq. (3), which would have caused the universe to expand to zero density long ago.

For most of the past century, it was the prejudice of theoreticians that the cosmological
constant was exactly zero, although no one could give a convincing argument. Recently,
however, with the new data gathered on the brightness-redshift relation for very distant
type Ia supernovæ [2,3], corroborated by the balloon observations of the anisotropy in the
cosmic microwave background [4–6], it seems clear that the cosmological constant is near
the critical value, or ΩΛ = Λ/8πGρc ∼ 1. It is very hard to understand how the cosmological
constant can be nonzero but small.

We here present a plausible scenario for understanding this puzzle. It is reasonable (but
by no means established) that vacuum fluctuations in the gravitational and matter fields
in flat Minkowski space give a zero cosmological constant.1 (See below.) Effects due to

1This is in line with considerations of Casimir energies in other contexts. For example, although

the electromagnetic Casimir energy of a ball of dilute nondispersive dielectric material is divergent,

that divergence can be unambiguously removed as an unobservable bulk and surface effect, and a

unique finite energy, interpretable as a sum of van der Waals energies, emerges. See Refs. [7].
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curvature are negligible. But since the work of Kaluza and Klein [8] it has been an exciting
possibility that there exist extra dimensions beyond those of Minkowski space-time. Why
do we not experience those dimensions? The simplest possibility seems to be that those
extra dimensions are curled up in a space S of size a, smaller than some observable limit.

Of course, in recent years, the idea of extra dimensions has become much more com-
pelling. Superstring theory requires at least 10 dimensions, six of which must be compact-
ified, and the putative M theory, supergravity, is an 11 dimensional theory. Perhaps, if
only gravity experiences the extra dimensions, they could be of macroscopic size. Various
scenarios have been suggested [9,10].

Macroscopic extra dimensions imply deviations from Newton’s law at such a scale. A
year ago, millimeter scale deviations seemed plausible, and many theorists hoped that the
higher-dimensional world was on the brink of discovery. Experiments were initiated [11].
Very recently, the results of the first definitive experiment have appeared [12], which indicate
no deviation from Newton’s law down to 218 µm. This poses a serious constraint for model-
builders.2

Here we propose that a very tight constraint indeed emerges if we recognize that compact
dimensions of size a necessarily possess a quantum vacuum or Casimir energy of order
u(z) ∼ a−4. That such energies are observable is confirmed by recent experiments [14].
These can be calculated in simple cases. Applequist and Chodos [15] found that the Casimir
energy for the case of scalar field on a circle, S = S1, was

uC = −
3ζ(5)

64π6a4
= −

5.056× 10−5

a4
, (6)

which needs only to be multiplied by 5 for graviton fluctuations. The general case of scalars
on S = SN , N odd, was considered by Candelas and Weinberg [16], who found that the
Casimir energy was positive for 3 ≤ N ≤ 19, with a maximum at N = 11 of uC = 1.134×
10−3/a4. The even dimensional case was much more difficult, because it was divergent.
Kantowski and Milton [17] showed that the coefficient of the logarithmic divergence was
unique, and adopting the Planck length as the natural cutoff, found

SN , N even : uN
C =

αN

a4
ln

a

LPl

, (7)

but αN was always negative for scalars. In a second paper [18] they extended the analysis
to vectors, tensors, fermions, and to massive particles, among which cases positive values
of the (divergent) Casimir energy could be found. Some representative results for massless
particles are shown in Table I. In an unsuccessful attempt to find stable configurations, the
analysis was extended to cases where the internal space was the product of spheres [21].

The goal, of course, in all these investigations was to include graviton fluctuations. How-
ever, it immediately became apparent that the results were gauge- and reparameterization-
dependent unless the DeWitt-Vilkovisky formalism was adopted [22]. This was an extraor-

2We might also mention short distance constraints on Yukawa-type corrections to the gravitational

potential coming from Casimir measurements themselves [13].
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dinarily difficult task. Only in the past year has the general analysis for gravity appeared,3

with results for a few special geometries [24]. Cho and Kantowski obtain the unique divergent
part of the effective action for S = S2, S4, and S6, as polynomials in Λa2. (Unfortunately,
once again, they are unable to find any stable configurations.) The results are also shown in
Table I, for Λa2 ∼ G/a2 � 1. It will be noted that graviton fluctuations dominate matter
fluctuations, except in the case of a large number of matter fields in a small number of
dimensions. Of course, it would be very interesting to know the graviton fluctuation results
for odd-dimensional spaces, but that seems to be a more difficult calculation; it is far easier
to compute the divergent part than the finite part, which is all there is in odd-dimensional
spaces.

Let us now perform some simple estimates of the cosmological constant in these models.
The data suggest a positive cosmological constant, so we can exclude those cases where the
Casimir energy is negative. For the odd N cases, where the Casimir energy is finite, let us
write

SN , N odd : uN
C =

βN

a4
, (8)

so merely requiring that this be less than the critical density ρc implies (β > 0)

a >
∼ β1/4h

−1/2

0 67 µm ≈ β1/480 µm, (9)

taking [25] h0 = 0.7 (with about a 10–20% uncertainty). As seen in Table II these lower
limits (for a single species) are still an order of magnitude below the experimental upper limit
[12], except perhaps for vectors. Much tighter constraints appear if we use the divergent
results for even dimensions. We have the inequality (α > 0)

a >
∼ [α ln(a/LPl)]

1/480 µm, (10)

where we can approximate (ln a/LPl)
1/4 ≈ 2.9. Again results are shown in Table II, which

rules out all but one of the gravity cases (S2) given by Cho and Kantowski [24]. For matter
fluctuations only [18], excluded are N > 14 for a single vector field and N > 6 for a single
tensor field. (Fermions are always negative in even dimensions.) Of course, it is possible to
achieve cancellations by including various matter fields and gravity. In general the Casimir
energy is obtained by summing over the species of field,

utot =
1

a4

∑

i

[αi ln(a/LPl) + βi] ≈
βeff

a4
,

which leads to a lower limit according to Eq. (9). Presumably, if exact supersymmetry held
in the extra dimensions (including supersymmetric boundary conditions), the Casimir energy
would vanish, but this would seem to be difficult to achieve with large extra dimensions (1
mm corresponds to 2× 10−4 eV.)

3A few special cases were known earlier. Besides that of S = S1, the general six-dimensional

background was considered by Cho and Kantowski [23], which includes S = S 1 × S1 and S2.
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There have been a number of proposals in which either in string [26,27] or brane [28]
contexts the cosmological constant can be made to vanish. These solutions may not be alto-
gether natural, and may indeed require fine tuning [29]. (Moreover, the suggestions either do
not include gravitational fluctuations, or ignore the problem of gauge and parameterization
dependence.) Such ideas could explain the vanishing of ucosmo, or of a corresponding energy
arising at the electroweak symmetry breaking scale, ΛEW ∼ 1 TeV,

uEW ∼ Λ4

EW
∼ 1053GeV/cm3, (11)

due to fluctuations in standard model fields, but they would presumably not lead to the
simultaneous vanishing of the Casimir energy. Indeed Sundrum in Ref. [26] obtains a small
cosmological constant based on a narrow window in allowed graviton compositeness, or
string, scale, mst,

10 µm <
1

mst

< 1 cm. (12)

Theoretical and experimental limits this past year have nearly closed this window. Clearly,
the ideas expressed here provide a stringent constraint for model builders.
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TABLES

Geometry S Gravity Scalar Fermion Vector

S1 (u) β = −2.53 × 10−4 −5.06 × 10−5 2.02 × 10−4 —

S1 (t) β = 2.37 × 10−4 4.74 × 10−5 −1.90× 10−4 —

S2 α = 1.70 × 10−2 −8.04 × 10−5 −7.94× 10−4 −8.04× 10−5

S3 — β = 7.57 × 10−5 1.95 × 10−4 −3.90× 10−2

S4 α = −0.489 −4.99 × 10−4 −6.64× 10−3 1.21 × 10−2

S5 — β = 4.28 × 10−4 −1.14× 10−4 2.96

S6 α = 5.10 −1.31 × 10−3 −3.02× 10−2 4.90 × 10−2

S7 — β = 8.16 × 10−4 5.96 × 10−5 −58.4

TABLE I. The Casimir energy for M 4 × S is tabulated for various field types in the compact

geometry S. We write u = [α ln(a/LPl) + β]a−4, and give α for even internal dimension and

β for odd, where α = 0. For S1 u denotes untwisted (periodic) while t twisted (antiperiodic)

boundary conditions. The entries marked with dashes have not been calculated. (We should

note that a general recipe for calculating the odd-N terms for vectors and tensors is given in

Ref. [19], but results are not explicit, and require knowledge of the “polylogarithmic-exponential”

function. Moreover, the Casimir energies they find are complex. The method given in Ref. [18]

has, in contrast, no problems with tachyons, and would give real energies. Explicit numbers

were, however, given in Ref. [20] for the various components of gravity without the necessary

Vilkovisky-DeWitt correction. For reference we show here the values given there for the transverse

vector part, divided by the degeneracy factor N + 1 for N = 3, 5, and 7.) The numbers are taken

from Refs. [16–18,20,24].

Geometry S Gravity Scalar Fermion Vector

S1 (u) * * 9.5 µm —

S1 (t) 9.9 µm 6.6 µm * —

S2 84 µm * * *

S3 — 7.5 µm 9.5 µm *

S4 * * * 77 µm

S5 — 11.5 µm * 105 µm

S6 350 µm * * 110 µm

S7 — 13.5 µm 7.0 µm *

TABLE II. The lower limit to the radius of the compact dimensions deduced from the require-

ment that the Casimir energy not exceed the critical density. The numbers shown are for a single

species of the field type indicated. The dashes indicate cases where the Casimir energy has not

been calculated, while asterisks indicate (phenomenologically excluded) cases where the Casimir

energy is negative.
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