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Abstract

It is shown that Maxwell’s equations in a vacuum do not allow for a local

maximum in the value of the electric field E2, but do allow for a local mini-

mum. Such a field minimum creates a trap of neutral particles that exhibit

a Stark effect. Specific criteria are given for the design of such a trap and

results of numerical calculations of sample trap potentials are presented.

I. INTRODUCTION

A suitable arrangement of biased conductors [1] leads to an electrostatic field of zero

magnitude at a central location that grows to tens of kV/cm away from the center. Such

a field has allowed polar molecules to be confined in far deeper potential wells than may be

realized with magnetic traps [2] [3]. The neutral particles we consider do not move in a

potential proportional to the electrostatic potential V , but instead, the motion is dictated

by the spatial dependence of the shift quantum energy due to the local magnitude of the

electric field. For this reason, the electrostatic trapping we consider does not contradict

the fact that a charged particle cannot be held in stable equilibrium by electrostatic forces

alone (as first pointed out by Earnshaw [4].) In the limit of adiabatic motion, the effective
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potential is dependent only on the particle quantum state and the local magnitude of the

electric field E = | ~E|. Although Maxwell’s equations do not allow a local minimum in V ,

no such constraint forbids a local minimum in E. The purpose of this work is to show that

it is possible to build an electrostatic trap that has a non-zero bias field at the center. Our

device may serve the same purpose as the Ioffe [5]-Pritchard [6] magnetostatic trap; namely

the suppression of nonadiabatic motion that occurs in regions where the field (and hence the

energy splitting between quantum states) goes to zero or the gradient of the trap potential

diverges. We speculate that this problem of nonadiabatic motion will be especially severe

for those cases in which the Stark energy U of the molecules grows quadratically rather than

linearly with electric field

Throughout this work we consider a hypothetical particle traveling in the quadratic Stark

potential

U = αE2, (1)

where ~E is the spatially dependent electric field and α is a constant. In the next section we

show that Maxwell’s equations allow for a local minimum in E2, but do not allow for a local

maximum. In section III we show requirements on the potential V for a local minimum

in E2 to exist and provide a practical illustration of such a biased Stark trap. The formal

theorem we prove concerning biased Stark traps is stated in section IV.

II. SIMPLE PROOF THAT THERE CAN BE NO SPATIAL LOCAL MAXIMUM

IN E2

It is straightforward to show that the Laplacian of E2 is nonnegative. We start from

∇2E2 = 2 (∂iEj) (∂iEj) + 2
[

~E · ∇2 ~E
]

Because ~E is harmonic, the term in square brackets is zero, leading to

∇2E2 = 2
∑

i

∣∣∣~∇Ei

∣∣∣
2 ≥ 0. (2)
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The fact that the Laplacian of E2 is everywhere nonnegative proves that there cannot exist a

local quadratic maximum in E2(x, y, z). In the following section we eliminate the possibility

of local maxima in E2 to any order in ~r.

III. DESIGN OF A BIASED STARK TRAP

In what follows we investigate the specific constraints on an electric field that allow for a

local minimum in U at a point at which E2 6= 0. Specifically, we find the spherical-harmonic

expansion coefficients Alm of the electrostatic potential that lead to a biased Stark trap.

A. Expansion of the Stark potential u in terms of spherical harmonics

Letting u = U/αE2
o where Eo is the magnitude of the electric field at the center of the

trap, the quadratic Stark potential becomes u = ~E · ~E/E2
o which can be written as half of

the Laplacian of V 2 by applying the condition ∇2V = 0 :

u =
1

2
∇2V 2/E2

o . (3)

We now expand the potential about the location of the local minimum:

V = Eoa
∑

`,m

A`m

(
r

a

)`

C`
m(θ, φ). (4)

Here Y `m(θ, φ) are related to the normalized spherical harmonics by

Y `m(θ, φ) =
(

4π

2` + 1

)1/2

Y`m(θ, φ) (5)

and a is a parameter with units of distance. Squaring this expanded form of the potential

and taking the Laplacian leads to

u =
∑

`1,m1,`2,m2,L

A`1m1
A`2m2

DL,`1,`2
m1,m2

Y L,m1+m2
(θ, φ)

(
r

a

)`1+`2−2

, (6)

where DL,`1,`2
m1,m2

is related to the spherical harmonic triple integral [7] and is given in terms of

3-j symbols by
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DL,`1,`2
m1,m2

= (−1)m1+m2(2L + 1)

[
(`1 + `2)(`1 + `2 + 1)− L(L + 1)

2

]

×




`1 `2 L

0 0 0







`1 `2 L

m1 m2 −(m1 + m2)


 , (7)

where the factor in square brackets represents the action of the Laplacian. Note that

DL,`1,`2
m1,m2

= 0 unless L + `1 + `2 is even (because of parity), |mi| ≤ `i, and |`1 − `2| ≤ L ≤

l1 + l2 − 1.

B. Constraints on the expansion coefficients A`m of the biased trap potential

Now we assume that the coordinate system has been fixed so that ~Eo = Eoẑ at the origin.

This choice requires

A1±1 = 0 and A10 = −1. (8)

Separating those terms in the expansion of u that contain the A10 moment from those that

do not leads to

u = 1− 2
∑

`>1,m

A`,mD`−1,1,`
0,m Y `−1,m(θ, φ)

(
r

a

)`−1

+
∑

`1>1,`2>1,m1,m2

`1+`2−1∑

L=|`1−`2|

A`1m1
A`2m2

DL,`1,`2
m1,m2

Y L,m1+m2
(θ, φ)

(
r

a

)`1+`2−2

. (9)

Let us first consider the second term in this expression, i.e., the term resulting from the

expansion of A10A`,mY10Y`,m. No element of this summation has a Y00 coefficient. This is

of crucial importance. Without a Y00 contribution, the lowest order term cannot be positive

definite. Thus if the lowest order contribution results only from a cross term with A10, one

cannot have a local minimum at r = 0. At first this might make one conclude that a trap is

impossible. However, the A`±` coefficients do not contribute to this sum. Thus we might

be able to manage a minimum of order r2`n−2 provided

Alm





= 0 for 1 < ` < `n

6= 0 for ` = `n and m = ±`n

= 0 for `n ≤ ` < 2`n − 1 and m 6= ±`

. (10)
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With these conditions and taking advantage of the fact that A`,m must equal (−1)mA∗
`,−m

for V to be real, the trap potential becomes

u = 1 +

[
−2

∑

m

A2`n−1,mD2`n−2,1,2`n−1

0,m Y 2`n−2,m(θ, φ)

+ 2
ln−1∑

L=0

(−1)`n|A`n,`n
|2D2L,`n,`n

`n,−`n
Y 2L,0(θ, φ)



(

r

a

)2ln−2

+O(r2`n−1). (11)

Note Y2`n−2,m6=0 cannot be positive definite in φ. Thus a non-zero coefficient A2`n−1,m with

m 6= 0 will only serve to lower the trap depth in certain azimuthal directions. For this

reason, we now assume A2`n−1,m = 0 for m 6= 0. These assumptions allow us to simplify Eq.

(11) to

u = 1 +
[
γP2`n−2(cos θ) + |β|2 sin2`n−2 θ

] (r

a

)2`n−2

+O(r2`n−1). (12)

Here the non-zero expansion coefficients of the electrostatic potential are given by

A10 = −1, (13a)

A2`n−1,0 =
γ

(2− 4`n)
, (13b)

A`n,`n
= (−1)`nA∗

`n,−`n

=
β

2`n

√
P2`n

(0)
. (13c)

Equation (12) is our final expression for the biased electrostatic trap potential. It is valid

provided the relationships of Eqs. (13a)-(13c) hold and A`,m = 0 for all other coefficients with

` < 2`n (coefficients of order 2`n and greater do not contribute to order r2`n−2.) Note that

although the coefficient of the P2`n−2(cos θ) term is arbitrary in both sign and magnitude,

the sign of the sin2`n−2 θ term is necessarily positive. Because `n ≥ 2, P2`n−2(cos θ) has

zeros in the range of 0 < θ < π, so there must be some direction for which the potential is

a local minimum. Thus an extremum cannot be a local maximum, but is instead either a

local minimum or a saddle point. A local minimum is created if and only if
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γ > 0 (14)

and

|β|2 >
−γ P

2`n−2
(cos θmin)

sin2`n−2 θmin

. (15)

Here θmin is the angle for which P
2`n−2

(cos θ)/ sin2`n−2 θ is a minimum. Because we are only

interested in potentials that exhibit a local minimum, γ is positive and we can redefine our

scaling parameter a so that

γ = 1. (16)

C. Design of a quadratic (`n = 2) trap

For the case that `n = 2, we can create an isotropic trap provided β = (3/2)1/2. For this

case, Eq. (12) reduces to

u = 1 +
(

r

a

)2

+ O

((
r

a

)4
)

, (17)

where

A1,0 = −1, A1,±1 = 0, (18a)

A2,2 = A2−2 =
1

2
, (18b)

A2,0 = A2,±1 = 0, (18c)

A3,0 = −1

6
, (18d)

A3,±1 = A3,±2 = A3±3 = 0, (18e)

A4,±2 =
1

4
√

15
, (18f)

A4,0 = A4,±1 = A4,±3 = 0. (18g)

Here unspecified expansion coefficients do not affect the expansion of the Stark potential

to order r3. The constraints of Eqs. (18f) and (18g) have been added to zero out the r3

contribution to u.
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Construction of a laboratory device requires us to devise an electrode configuration that

creates an electric potential meeting the constraints of Eqs. (18a)-(18g). We examine the

properties of three different configurations using a combination of custom C code and the

software packages SIMION (Idaho National Engineering and Environmental Laboratory)

and Mathematica (Wolfrom Research). The first configuration considered, the six-wire

trap, consists of six semi-infinite wires along the Cartesian axes. The electrodes on the

positive and negative x-axes are held at a voltage of +V , the electrodes on the positive

and negative y-axes are held at −V , and the electrodes on the positive and negative z-

axes are held at −V and +V , respectively. (Fig. 1.A). Symmetry arguments show that

this configuration satisfies Eqs. (18a), (18c), and (18e). The other requirements are not

met quantitatively, however, numerical simulations show that a trap is formed, although it

suffers from significant anisotropy. The ratio between the escape potential and the potential

in the center of the well for this trap is approximately 1.1.

A more isotropic trap is created if the electrode surfaces are taken to be equipotential

surfaces of the ideal potential, truncated at some radius. To do this, the constants a and

Eo are taken to be 1, and all A`m moments with ` > 4 are taken to be zero. The electrodes

are then all points within a sphere of radius 2.5 centered at the origin with V ≥ 1.5 or

V ≤ −1.5. Electrodes created in this way are shown in Fig. 1.B1. This trap, which we call

the tennis ball trap bears a striking resemblence to the magnetic baseball trap proposed by

Bergman and et al [8] and demonstrated by Monroe et al [9]. As can be seen in Fig. 1.B2,

the tennis-ball trap creates a highly creates isotropic near the origin, as predicted. The

ratio of escape potential to potential at the center of the trap for this case is approximately

1.6. This configuration creates a potential that very nearly matches the ideal potential.

If precise quantification of the trap potential is required, these electrodes could be created

using surface machining techniques. However, the shape of the electrodes suggests a simpler

design.

The third chain-link trap is constructed from two electrodes, each created from a long

rod bent through a half torus to create a U-shape. The two electrodes are interlocked as
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shown in Fig. 1.C1. The negative electrode lies in the y-z plane, opening down whereas

the positive electrode lies in the x-z plane, opening up. When parameters are optimized

empirically, the resultant trap is fairly isotropic, as can be seen in Fig. 1.C2 and Fig. 2.

In addition, the maximum electric field present in the entire configuration is substantially

lower than that found in the six-wire or tennis-ball traps because of the absence of sharp

edges. The parameters we determine for a roughly spherical trap are as follows: Taking

the diameter of the electrode rods as d, the radius of curvature of the centerline of the half

torus bend is 2d. The center of curvature of each torus is offset d/3 from the origin along

the z-axis toward the other half-torus. With this geometry, the field Eo in the center of

the trap is 0.60 ∆V/d were ∆V is the difference of the potentials on the electrodes. The

minimum potential as a function of distance from the origin for such a trap is shown in

Fig. 3. The ratio between the escape E2 potential and the center potential E2
o is 2.5 and the

ratio between the maximum electric field in the system to Eo is 4.6. Because of its simple

construction compared to the tennis-ball trap, its relative isotropy compared to the six-wire

trap, and its low maximum field, this is presumably the trap most suitable for our research

goals.

IV. SUMMARY

In this paper we have shown that it is both possible and practical to construct an elec-

trostatic trap of low-field seeking particles (i.e., particles with a Stark energy that increases

with increasing field strength.) We have also proven the following theorem that eliminates

the possibility of creating a trap of high-field seeking particles:

Theorem: Let V (~r) be a real scalar function and U be a potential function given by

U = (~∇V ) · (~∇V ). Also assume a region of space for which ∇2V = 0. If an interior point

of this region contains an extremum with ~∇U = 0 but U 6= 0, then the extremum is not a

local maximum, but is instead either a local minimum or a saddle point.

This theorem has been proven for extrema of any order. Moreover, we can always find
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a potential U that has a local minimum of any even order at a point where U 6= 0. The

following corollary provides an extension to Earnshaw’s theorem to neutral particles moving

adiabatically in an electric field:

Corollary: A high-field seeking particle (i.e., a particle for which the Stark energy de-

creases with increasing field strength) moving adiabatically in an electrostatic field cannot be

held in stable equilibrium by that field alone.
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FIG. 1. Trap geometry (1) and E2 Stark potential in the x-z plane (2) for the six-wire trap

(A), tennis ball trap (B) and chain-link trap (C). The contour scale is linear with black regions

indicating E2 = 0 and white regions indicating values of E2 > 3.6E2
o .
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FIG. 2. Chain-link trap electrostatic field (1) and E2 Stark potential (2) in the x-y (A), y-z

(B) and x′-z (C) planes. Here x′ denotes an axis parallel to the vector x̂ + ŷ. Vectors indicate

magnitude and direction of the field at the origin of the vector. The vector scale varies between

the electrostatic field plots. The contour plot scaling is the same as used in Fig. 1.
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FIG. 3. Minimum value of E2/E2
o on a spherical surface a distance r from the center of the

chain-link trap. Here r is in units of the diameter d of the electrode rods.
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