Addendum to Solution to Problem 3.3

February 21, 2002

A number of you imposed a condition on w. This is not necessary, the
equations of motion are unchanged by the addition of a total derivative of an
arbitrary function to the Lagrangian. The problem is that you assumed, erro-
neously, that the Euler-Lagrange equations hold, which is only true if L(q, ¢, t).
The action principle makes no such restriction.

Let’s suppose
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Then the action principle gives for the equation of motion, upon varying with
respect to ¢ and integrating by parts suitably
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We know from the action principle that this equation of motion is unaltered
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How does this work explicitly? That is, we want to show identically that
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By using
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it is easy to see that
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etc. When this is inserted in Eq. (1) it is easy to see that every term cancels in
pairs, so that equation is identically satisfied as required.



