Physics 6433, Quantum Field Theory Assignment #8 Due Monday, April 13, 2015

April 1, 2015

1. Compute the $\mathcal{O}(1/\epsilon)$ terms in K(p) and $K_{\mu}(p)$ given in the notes, and thereby establish that

$$\Sigma^{(2a)}(0) = -\frac{3\lambda^2}{8\pi^4} \left[\frac{6m^2}{\epsilon^2} + \frac{6m^2}{\epsilon} \left(\frac{3}{2} + \psi(1) + \ln \frac{4\pi\mu^2}{m^2} \right) + \mathcal{O}(1) \right].$$

- 2. For m=0 evaluate K(p) and $K_{\mu}(p)$ through $\mathcal{O}(1)$, and thereby find the finite part of $\Sigma^{(2a)}(p)$ when m=0.
- 3. Compute $\Sigma^{(2a)}(p)$ on the mass shell, $p^2=-m^2$. The answer is

$$\begin{split} \Sigma^{(2a)}(p) \bigg|_{p^2 = -m^2} &= -96\hat{\lambda}^2 m^2 \Big\{ \frac{6}{\epsilon^2} + \frac{1}{\epsilon} \left(\frac{17}{2} + 6\psi(1) - 6\ln^2 \hat{m}^2 \right) \\ &+ \frac{71}{8} + \frac{\pi^2}{4} + \frac{17}{2} \left[\psi(1) - \ln \hat{m}^2 \right] + 3\psi^2(1) \\ &+ 3\ln^2 \hat{m}^2 - 6\psi(1) \ln \hat{m}^2 \Big\}, \end{split}$$

where

$$\hat{\lambda} = \frac{\lambda}{(4\pi)^2}, \quad \hat{m}^2 = \frac{m^2}{4\pi\mu^2}.$$