
Physics 6433, Quantum Field Theory

Assignment #10

Due Monday, April 27, 2015

April 21, 2015

1. Verify the form found in class for the two-point function using the
renormalization group (g = 4!λ/(4π)2):
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by computing f from the diagrams for Σ(p) through second order in g,
using the minimal subtraction scheme of ’t Hooft and Weinberg.

2. Verify that the engineering dimension of Γ(n)(p1, . . . , pn) is 4−n+ ǫ

2
(n−

2).

3. Calculate the lowest-order renormalization-group coefficients β, γ, and
δ in the renormalization scheme based on “physical renormalization”
points, that is, with the counterterms chosen so that the pole of G(2)

is at p2 = −m2
R, and this pole has residue 1, while the renormalized

coupling constant is defined by λR = − 1
4!
Γ

(4)
R |pi=0, [Hint: expressions

for F1 and G1 were given in class for this case.]

4. Show that the sign of dβ/dλ at a fixed point is renormalization-scheme
independent, if masses are neglected.
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