
Chapter 2

Schwinger’s Quantum

Action Principle

We now turn to the dynamics of quantum mechanics. We begin by considering
the transformation function 〈a′, t+dt|b′, t〉. Here |b′, t〉 is a state specified by the
values b′ = {b′} of a complete set of dynamical variables B(t), while |a′, t + dt〉
is a state specified by values a′ = {a′} of a (different) complete set of dynamical
variables A(t + dt). We suppose that A and B do not possess any explicit time
dependence—that is, their definition does not depend upon t. Here

〈a′, t + dt| = 〈a′, t|U, (2.1)

where the infinitesimal time translation operator is related to the generator of
time translations as follows,

U = 1 + iG = 1 − i dt H. (2.2)

The Hamiltonian H is a function of dynamical variables, which we write gener-
ically as χ(t), and of t explicitly. Thus

〈a′, t + dt|b′, t〉 = 〈a′, t|1 − i dt H(χ(t), t)|b′, t〉. (2.3)

We next translate states and operators to time zero:

〈a′, t| = 〈a′|U(t), |b′, t〉 = U−1(t)|b′〉, (2.4a)

χ(t) = U−1(t)χU(t), (2.4b)

where χ = χ(0), etc. Then,

〈a′, t + dt|b′, t〉 = 〈a′|1 − i dt H(χ, t)|b′〉, (2.5)

or, as a differential equation

δdyn〈a′, t + dt|b′, t〉 = i〈a′|δdyn[−dtH ]|b′〉
= i〈a′, t + dt|δdyn[−dt H(χ(t), t)]|b′, t〉, (2.6)
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where δdyn corresponds to changes in initial and final times, δt2 and δt1, and in
the structure of H , δH . [By reintroducing dt in the state on the left, we make
a negligible error of O(dt2).]

However, we can also consider kinematical changes. To understand these,
consider a system defined by coordinates and momenta, {qa(t)}, {pa(t)}, a =
1, . . . , n, which satisfy the canonical commutation relations,

[qa(t), pb(t)] = iδab, (h̄ = 1) (2.7a)

[qa(t), qb(t)] = [pa(t), pb(t)] = 0. (2.7b)

A spatial displacement δqa is induced by

U = 1 + iGq, Gq =

n
∑

a=1

paδqa. (2.8)

In fact (δqa is a number, not an operator),

U−1qaU = qa − 1

i
[qa, Gq]

= qa − δqa, (2.9)

while

U−1paU = pa − 1

i
[pa, Gq] = pa. (2.10)

The (dual) symmetry between position and momentum,

q → p, p → −q, (2.11)

gives us the form for the generator of a displacement in p:

Gp = −
∑

a

qaδpa. (2.12)

A kinematic variation in the states is given by the generators

δkin〈 | = 〈 | − 〈 | = 〈 |iG, (2.13a)

δkin| 〉 = | 〉 − | 〉 = −iG| 〉, (2.13b)

so, for example, under a δq variation, the transformation function changes by

δq〈a′, t + dt|b′, t〉 = i〈a′, t + dt|
∑

a

[pa(t + dt)δqa(t + dt) − pa(t)δqa(t)] |b′, t〉.

(2.14)
Now the dynamical variables at different times are related by Hamilton’s equa-
tions,

dpa(t)

dt
=

1

i
[pa(t), H(q(t), p(t), t)]

= −∂H

∂qa
(t), (2.15)
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so

pa(t + dt) − pa(t) = dt
dpa(t)

dt
= −dt

∂H

∂qa
(t). (2.16)

Similarly, the other Hamilton’s equation

dqa

dt
=

∂H

∂pa
(2.17)

implies that

qa(t + dt) − qa(t) = dt
∂H

∂pa
(t). (2.18)

From this we deduce first the q variation of the transformation function,

δq〈a′, t + dt|b′, t〉

= i〈a′, t + dt|
∑

a

pa(t)[δqa(t + dt) − δqa(t)] − dt
∂H

∂qa
δqa(t) + O(dt2)|b′, t〉

= i〈a′, t + dt|δq

[

∑

a

pa(t).[qa(t + dt) − qa(t)] − dt H(q(t), p(t), t)

]

|b′, t〉,

(2.19)

where the dot denotes symmetric multiplication of the p and q operators.
For p variations we have a similar result:

δp〈a′, t + dt|b′, t〉
= −i〈a′, t + dt|

∑

a

[qa(t + dt)δpa(t + dt) − qa(t)δpa(t)]|b′, t〉

= −i〈a′, t + dt|
∑

a

qa(t)[δpa(t + dt) − δpa(t)] + dt
∂H

∂pa
(t)δpa(t)|b′, t〉

= i〈a′, t + dt|δp

[

−
∑

a

qa(t).(pa(t + dt) − pa(t)) − dt H(q(t), p(t), t)

]

|b′, t〉.

(2.20)

That is, for q variations

δq〈a′, t + dt|b′, t〉 = i〈a′, t + dt|δq [dtLq] |b′, t〉, (2.21a)

with the quantum Lagrangian

Lq =
∑

a

pa.q̇a − H(q, p, t), (2.21b)

while for p variations

δp〈a′, t + dt|b′, t〉 = i〈a′, t + dt|δp [dtLp] |b′, t〉, (2.22a)
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with the quantum Lagrangian

Lp = −
∑

a

qa.ṗa − H(q, p, t). (2.22b)

We see here two alternative forms of the quantum Lagrangian. Note that the
two forms differ by a total time derivative,

Lq − Lp =
d

dt

∑

a

pa.qa. (2.23)

We now can unite the kinematic transformations considered here with the
dynamic ones considered earlier, in Eq. (2.6):

δ = δdyn + δkin : δ〈a′, t + dt|b′, dt〉 = i〈a′, t + dt|δ[dt L]|b′, t〉. (2.24)

Suppose, for concreteness, that our states are defined by values of q, so that

δp〈a′, t + dt|b′t〉 = 0. (2.25)

This is consistent, as a result of Hamilton’s equations,

δpLq =
∑

a

δpa

(

q̇a − ∂H

∂pa

)

= 0. (2.26)

In the following we will use Lq.

It is immediately clear that we can iterate the infinitesimal version (2.24) of
the quantum action principle by inserting at each time step a complete set of
intermediate states (to simplify the notation, we ignore their quantum numbers):

〈t1|t2〉 = 〈t1|t1 − dt〉〈t1 − dt|t1 − 2dt〉 · · · 〈t2 + 2dt|t2 + dt〉〈t2 + dt|t2〉, (2.27)

So in this way we deduce the general form of Schwinger’s quantum action prin-

ciple:

δ〈t1|t2〉 = i〈t1|δ
∫ t1

t2

dt L|t2〉. (2.28)

This summarizes all the properties of the system.

Suppose the dynamical system is given, that is, the structure of H does not
change. Then

δ〈t1|t2〉 = i〈t1|G1 − G2|t2〉, (2.29)

where the generator Gi depends on p and q at time ti. Comparing with the
action principle (2.28) we see

δ

∫ t1

t2

dt L = G1 − G2, (2.30)
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which has exactly the form of the classical action principle (1.3), except that
the Lagrangian L and the generators G are now operators. If no changes occur
at the endpoints, we have the principle of stationary action,

δ

∫ t1

t2

(

∑

a

pa.dqa − H dt

)

= 0. (2.31)

As in the classical case, let us introduce a time parameter τ , t = t(τ), such that
τ2 and τ1 are fixed. The the above variation reads

∑

a

[δpa.dqa + pa.dδqa − δH dt − H dδt]

= d

[

∑

a

pa.δqa − H δt

]

+
∑

a

[δpa.dqa − dpa.δqa] − δH dt + dH δt,(2.32)

so the action principle says

G =
∑

a

pa.δqa − H δt, (2.33a)

δH =
dH

dt
δt +

∑

a

(

δpa.
dqa

dt
− δqa.

dpa

dt

)

. (2.33b)

We will again assume δpa, δqa are not operators (that is, they are proportional
to the unit operator); then we recover Hamilton’s equations,

∂H

∂t
=

dH

dt
, (2.34a)

∂H

∂pa
=

dqa

dt
, (2.34b)

∂H

∂qa
= −dpa

dt
. (2.34c)

(In the homework, you will explore the possibility of operator variations.) We
learn from the generators,

Gt = −H δt, Gq =
∑

a

paδqa, (2.35)

that the change in some function F of the dynamical variable is

δF =
dF

dt
δt +

1

i
[F, G], (2.36)

so we deduce

dF

dt
=

∂F

∂t
+

1

i
[F, H ], (2.37a)

∂F

∂qa
=

1

i
[F, pa]. (2.37b)
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Note that from this the canonical commutation relations follow,

[qa, pb] = iδab, [pa, pb] = 0, (2.38)

as well as Newton’s law,

ṗa = −1

i
[H, pa] = −∂H

∂qa
. (2.39)

If we had used Lp instead of Lq, we would have obtained the same equations
of motion, but in place of Gq, we would have obtained

Gp = −
∑

a

qaδpa, (2.40)

which implies
∂F

∂pa
= −1

i
[F, qa]. (2.41)

From this can be deduced the remaining canonical commutator,

[qa, qb] = 0, (2.42)

as well as the remaining Hamilton equation,

q̇a =
1

i
[qa, H ] =

∂H

∂pa
. (2.43)

In homework, you will show that the effect of changing the Lagrangian by a
total time derivative (which is what is done in passing from Lq to Lp) is to
change the generators.

We now turn to examples.

2.1 Harmonic Oscillator

The harmonic oscillator is defined in terms of creation and annihilation opera-
tors, a† and a, and the corresponding Hamiltonian H ,

[a, a†] = 1, (2.44a)

H = ω

(

a†a +
1

2

)

. (2.44b)

The equations of motion are

da

dt
=

1

i
[a, H ] =

1

i
ωa, (2.45a)

da†

dt
=

1

i
[a†, H ] = −1

i
ωa†. (2.45b)
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Eigenstates of a and a† exist, as right and left vectors, respectively,

a|a′〉 = a′|a′〉, (2.46a)

〈a†′|a† = a†′〈a†′|, (2.46b)

while 〈a′| and |a†′〉 do not exist.1 These are the famous “coherent states.”
The transformation function we seek is therefore

〈a†′, t1|a′′, t2〉. (2.48)

If we regard a as a “coordinate,” the corresponding “momentum” is ia†:

ȧ =
1

i
ωa =

∂H

∂ia† , ia† = −ωa† = −∂H

∂a
. (2.49)

The corresponding Lagrangian is therefore2

L = ia†.ȧ − H. (2.51)

Because we use a as our state variable at the initial time, and a† at the final time,
we must exploit our freedom to redefine our generators to write (see homework)

W12 =

∫ 1

2

dt L − ia†(t1).a(t1). (2.52)

Then the variation of the action is

δW12 = −iδ(a†
1.a1) + G1 − G2

= −iδa†
1.a1 − ia†

1.δa1 + ia†
1.δa1 − ia†

2.δa2 − H δt1 + H δt2

= −iδa†
1.a1 − ia†

2.δa2 − H(δt1 − δt2). (2.53)

Then the quantum action principle says

δ〈a†′, t1|a′′, t2〉 = i〈a†′, t1| − iδa†′
1 a1 − ia†

2δa
′′
2 − ωa†′

1 a1(δt1 − δt2)|a′′, t2〉, (2.54)

since by assumption the variations in the dynamical variables are numerical:

[δa†
1, a1] = [a†

2, δa2], (2.55)

and we have dropped the zero-point energy (see homework). Now use the equa-
tions of motion (2.45a) and (2.45b) to deduce that

a1 = e−iω(t1−t2)a2, a†
2 = e−iω(t1−t2)a†

1 (2.56)

1If a〈a′|a = a′〈a′| then we would have an evident contradiction:

1 = 〈a′|[a, a†]|a′〉 = a′〈a′|a†|a′〉 − 〈a′|a†|a′〉a′ = 0. (2.47)

2We might note that in terms of (dimensionless) position and momentum operators

ia†.ȧ =
i

2
(q − ip).(q̇ + iṗ) =

1

2
(p.q̇ − q.ṗ) +

i

4

d

dt
(q2 + p2), (2.50)

where the first term in the final form is the average of the Legendre transforms in Lq and Lp.
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and hence

δ〈a†′, t1|a′′, t2〉 = 〈a†′, t1|δa†′e−iω(t1−t2)a′′ + a†′e−iω(t1−t2)δa′′

− iωa†′e−iω(t1−t2)(δt1 − δt2)a
′′|a′′, t2〉

= 〈a†′, t1|a′′, t2〉δ
[

a†′e−iω(t1−t2)a′′
]

. (2.57)

From this we can deduce that the transformation function has the exponential
form

〈a†′, t1|a′′, t2〉 = exp
[

a†′e−iω(t1−t2)a′′
]

, (2.58)

which has the correct boundary condition at t1 = t2 (see homework); and in
particular, 〈0|0〉 = 1.

On the other hand,

〈a†′, t1|a′′, t2〉 = 〈a†′|e−iH(t1−t2)|a′′〉, (2.59)

where both states are expressed at the common time t2, so, upon inserting a
complete set of energy eigenstates, we obtain (t = t1 − t2)

∑

E

〈a†′|E〉e−iEt〈E|a′′〉, (2.60)

which we compare to the Taylor expansion of the previous formula,

∞
∑

n=0

(a†′)n

√
n!

e−inωt (a
′′)n

√
n!

. (2.61)

This gives all the eigenvectors and eigenvalues:

En = nω, n = 0, 1, 2, . . . , (2.62a)

〈a†′|En〉 =
(a†′)n

√
n!

, (2.62b)

〈En|a′′〉 =
(a′′)n

√
n!

. (2.62c)

These correspond to the usual construction of the eigenstates from the ground
state:

|En〉 =
(a†)n

√
n!

|0〉. (2.63)

2.2 Forced Harmonic Oscillator

Now we add a driving term to the Hamiltonian,

H = ωa†a + aK∗(t) + a†K(t), (2.64)
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where K(t) is an external force (Kraft is force in German). The equation of
motion is

i
da

dt
=

∂H

∂a† = [a, H ] = ωa + K(t), (2.65)

while a† satisfies the adjoint equation. In the presence of K(t), we wish to
compute 〈a†′, t1|a′′, t2〉K .

Consider a variation of K. According to the action principle

δK〈a†′, t1|a′′, t2〉K = 〈a†′, t1|iδKW12|a′′, t2〉K

= −i〈a†′, t1|
∫ t1

t2

dt[δKa† + δK∗a]|a′′, t2〉K . (2.66)

We can solve this differential equation by noting that the equation of motion
(2.65) can be rewritten as

i
d

dt

[

eiωta(t)
]

= eiωtK(t), (2.67)

which is integrated to read

eiωta(t) − eiωt2a(t2) = −i

∫ t

t2

dt′ eiωt′K(t′), (2.68)

or

a(t) = e−iω(t−t2)a2 − i

∫ t

t2

dt′ e−iω(t−t′)K(t′), (2.69)

and the adjoint3

a†(t) = e−iω(t1−t)a†
1 − i

∫ t1

t

dt′ e−iω(t′−t)K∗(t′). (2.72)

Thus our differential equation (2.66) reads

δK〈a†′, t1|a′′, t2〉K
〈a†′, t1|a′′, t2〉K

= δK ln〈a†′, t1|a′′, t2〉K

3The consistency of these two equations follows from

eiωt1a1 = eiωt2a2 − i

∫ t1

t2

dt′ eiωt′K(t′), (2.70)

so that the adjoint of Eq. (2.69) is

[a(t)]† = eiωt

[

e−iωt1a†
1 − i

∫ t1

t2

dt′ e−iωt′K∗(t′)

]

+ i

∫ t

t2

dt′ e−iω(t′−t)K∗(t′)

= eiω(t−t1)a†
1 + i

∫ t

t1

dt′ e−iω(t′−t)K∗(t′), (2.71)

which is Eq. (2.72).
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= −i

∫ t1

t2

dt δK(t)

[

a†′e−iω(t1−t) − i

∫ t1

t

dt′ e−iω(t′−t)K∗(t′)

]

− i

∫ t1

t2

dt δK∗(t)

[

e−iω(t−t2)a′′ − i

∫ t

t2

dt′ e−iω(t−t′)K(t′)

]

.(2.73)

Notice that in the terms bilinear in K and K∗, K always occurs earlier than
K∗. Therefore, these terms can be combined to read

−δK

∫ t1

t2

dt dt′ K∗(t)η(t − t′)e−iω(t−t′)K(t′), (2.74)

where the step function is

η(t) =

{

1, t > 0,
0, t < 0.

(2.75)

Since we already know the K = 0 value from Eq. (2.58), we may now immedi-
ately integrate our differential equation:

〈a†′, t1|a′′, t2〉K = exp

[

a†′e−iω(t1−t2)a′′

− ia†′
∫ t1

t2

dt e−iω(t1−t)K(t) − i

∫ t1

t2

dt e−iω(t−t2)K∗(t) a′′

−
∫ t1

t2

dt dt′ K∗(t)η(t − t′)e−iω(t−t′)K(t′)

]

. (2.76)

The ground state is defined by a′′ = a†′ = 0, so

〈0, t1|0, t2〉K = exp

[

−
∫ ∞

−∞
dt dt′ K∗(t)η(t − t′)e−iω(t−t′)K(t′)

]

, (2.77)

where we now suppose that the forces turn off at the initial and final times, t2
and t1, respectively.

A check of this result is obtained by computing the probability of the system
remaining in the ground state:

|〈0, t1|0, t2〉K |2 = exp

{

−
∫ ∞

−∞
dt dt′ K∗(t)e−iω(t−t′)[η(t − t′) + η(t′ − t)]K(t′)

}

= exp

[

−
∫ ∞

−∞
dt dt′ K∗(t)e−iω(t−t′)K(t′)

]

= exp
[

−|K(ω)|2
]

, (2.78)

where the Fourier transform of the force is

K(ω) =

∫ ∞

−∞
dt eiωtK(t). (2.79)
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The probability requirement

|〈0, t1|0, t2〉K |2 ≤ 1 (2.80)

is thus satisfied. We see here a resonance effect: If the oscillator is driven close
to its natural frequency, so K(ω) is large, there is a large probability of finding
the system in an excited state, and therefore of not remaining in the ground
state. Let us calculate this transition amplitude to an excited state. By setting
a′′ = 0 in Eq. (2.76) we obtain

〈a†′, t1|0, t2〉K = exp

[

−ia†′
∫ ∞

−∞
dt e−iω(t1−t)K(t)

]

〈0, t1|0, t2〉K

=
∑

n

〈a†′, t1|n, t1〉〈n, t1|0, t2〉K , (2.81)

where we have inserted a sum over a complete set of energy eigenstates, which
possess the amplitude [see Eq. (2.62b)]

〈a†′|n〉 =
(a†′)n

√
n!

. (2.82)

If we expand the first line of Eq. (2.81) in powers of a†′, we find

〈n, t1|0, t2〉K =
(−i)n

√
n!

e−inωt1 [K(ω)]n〈0, t1|0, t2〉K . (2.83)

The corresponding probability is

p(n, 0) = |〈n, t1|0, t2〉K |2 =
|K(ω)|2n

n!
e−|K(ω)|2 , (2.84)

which is a Poisson distribution4 with mean n̄ = |K(ω)|2.
Finally, let us define the Green’s function for this problem by

G(t − t′) = −iη(t − t′)e−iω(t−t′). (2.86)

It satisfies the differential equation
(

i
d

dt
− ω

)

G(t − t′) = δ(t − t′), (2.87)

as it must because [see Eq. (2.65)]
(

i
d

dt
− ω

)

a(t) = K(t), (2.88)

4A Poisson probability distribution has the form p(n) = γne−γ/n!. The mean value of n
for this distribution is

n̄ =

∞
∑

n=0

n p(n) =

∞
∑

n=0

γne−γ

(n − 1)!
= γ

∞
∑

n=0

p(n) = γ. (2.85)
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where a(t) is given by [see Eq. (2.69)]

a(t) = e−iω(t−t2)a2 +

∫ ∞

−∞
dt′ G(t − t′)K(t′). (2.89)

Similarly, from Eq. (2.72)

a†(t) = e−iω(t1−t)a†
1 +

∫ ∞

−∞
dt′ G(t′ − t)K∗(t′). (2.90)

We can now write the ground-state persistence amplitude (2.77) as

〈0, t1|0, t2〉K = exp

[

−i

∫ ∞

−∞
dt dt′ K∗(t)G(t − t′)K(t′)

]

, (2.91)

and the general amplitude (2.76) as

〈a†′, t1|a′′, t2〉K = exp

{

− i

∫ ∞

−∞
dt dt′

[

K∗(t) + ia†′δ(t − t1)
]

×G(t − t′) [K(t′) + ia′′δ(t′ − t2)]

}

, (2.92)

which demonstrates that knowledge of 〈0, t1|0, t2〉K for all K determines every-
thing:

〈a†′, t1|a′′, t2〉K = 〈0, t1|0, t2〉K(t)+ia′′δ(t−t2)+ia†′δ(t−t1). (2.93)

2.3 Feynman Path Integral Formulation

Although much more familiar, the path integral formulation of quantum me-
chanics is rather vaguely defined. We will here provide a formal “derivation”
based on the Schwinger principle, in the harmonic oscillator context.

Consider a forced oscillator, defined by the Lagrangian (note in this section,
H does not include the source terms)

L = ia†.ȧ − H(a, a†) − Ka† − K∗a. (2.94)

As in the preceding section, the action principle says

δK〈0, t1|0, t2〉K = −i〈0, t1|
∫ t1

t2

dt [δKa† + δK∗a]|0, t2〉K , (2.95)

or for t2 < t < t1,

i
δ

δK(t)
〈0, t1|0, t2〉K = 〈0, t1|a†(t)|0, t2〉K , (2.96a)

i
δ

δK∗(t)
〈0, t1|0, t2〉K = 〈0, t1|a(t)|0, t2〉K , (2.96b)
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where we have introduced the concept of the functional derivative. The equation
of motion

iȧ − ∂H

∂a† − K = 0, −iȧ† − ∂H

∂a
− K∗ = 0, (2.97)

is thus equivalent to the functional differential equation,

0 =

{

i

[

K(t), W

[

i
δ

δK∗ , i
δ

δK

]]

− K(t)

}

〈0, t1|0, t2〉K , (2.98)

where (the square brackets indicate functional dependence)

W [a, a†] =

∫ t1

t2

dt [ia†(t).ȧ(t) − H(a(t), a†(t))]. (2.99)

The reason Eq. (2.98) holds is that by definition

δ

δK(t)
K(t′) = δ(t − t′), (2.100)

so

i

[

K(t),

∫ t1

t2

dt′
(

i
iδ

δK(t′)
.

d

dt′
iδ

δK∗(t′)
− H

(

iδ

δK∗(t′)
,

iδ

δK(t′)

))]

= i
d

dt

iδ

δK∗(t)
− ∂

∂(iδ/δK(t))
H

(

iδ

δK∗(t)
,

iδ

δK(t)

)

, (2.101)

which corresponds to the first two terms in the equation of motion (2.97), under
the correspondence

a ↔ i
δ

δK∗ , a† ↔ i
δ

δK
. (2.102)

Since [K, W ], W ] = 0, we can write the functional equation (2.98) as

0 = eiW [iδ/δK∗,iδ/δK]Ke−iW [iδ/δK∗,iδ/δK]〈0, t1|0, t2〉K . (2.103)

The above equation has a solution (up to a constant), because both equations
(2.97) must hold,

〈0, t1|0, t2〉K = eiW [iδ/δK∗,iδ/δK]δ[K]δ[K∗], (2.104)

where δ[K], δ[K∗] are functional delta functions. The latter have functional
Fourier decompositions (up to a multiplicative constant),

δ[K] =

∫

[da†]e−i
∫

dt K(t)a†(t), (2.105a)

δ[K∗] =

∫

[da]e−i
∫

dt K∗(t)a(t), (2.105b)



28 Version of January 25, 2015CHAPTER 2. QUANTUM ACTION PRINCIPLE

where [da] represents an element of integration over all (numerical-valued) func-

tions a(t), and so we finally have

〈0, t1|0, t2〉K,K∗

=

∫

[da][da†] exp

(

−i

∫ t1

t2

dt
[

K(t)a†(t) + K∗(t)a(t)
]

+ iW [a, a†]

)

=

∫

[da][da†] exp

(

i

∫ t1

t2

dt
[

ia†ȧ − H(a, a†) − Ka† − K∗a
]

)

, (2.106)

where a, a† are now numerical, and the functional integration is over all possible
functions, over all possible “paths.” Of course, the classical paths, the ones for
which W −

∫

dt(Ka† + K∗a) is an extremum, receive the greatest weight, at
least in the classical limit, where h̄ → 0.

2.3.1 Example

Consider the harmonic oscillator Hamiltonian, H = ωa†a. Suppose we wish to
calculate, once again, the ground state persistence amplitude, 〈0, t1|0, t2〉K . It
is perhaps easiest to perform a Fourier transform,

a(ν) =

∫ ∞

−∞
dt eiνta(t), a∗(−ν) =

∫ ∞

−∞
dt e−iνta†(t). (2.107)

Then
∫ ∞

−∞
dt a†(t)a(t) =

∫ ∞

−∞

dν

2π
a(ν)a∗(−ν), (2.108a)

∫ ∞

−∞
dt ia†(t)ȧ(t) =

∫ ∞

−∞

dν

2π
νa(ν)a∗(−ν). (2.108b)

Thus Eq. (2.106) becomes

〈0, t1|0, t2〉K,K∗

=

∫

[da][da∗] exp

{

i

∫

dν

2π
[a(ν)(ν − ω)a∗(−ν) − a∗(−ν)K(ν) − a(ν)K∗(−ν)]

}

=

∫

[da][da∗] exp

{

i

∫

dν

2π

[

a(ν) − K(ν)

ν − ω

]

(ν − ω)

[

a∗(−ν) − K∗(−ν)

ν − ω

]

− i

∫

dν

2π
K(ν)

1

ν − ω
K∗(−ν)

}

=

∫

[da][da∗] exp

{

i

∫

dν

2π
a(ν)(ν − ω)a∗(−ν)

}

× exp

{

−i

∫

dν

2π
K(ν)

1

ν − ω
K∗(−ν)

}

= exp

{

−i

∫

dν

2π
K(ν)

1

ν − ω
K∗(−ν)

}

, (2.109)
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since the first exponential in the penultimate line, obtained by shifting the
integration variable,

a(ν) − K(ν)

ν − ω
→ a(ν), (2.110a)

a∗(−ν) − K∗(−ν)

ν − ω
→ a∗(−ν), (2.110b)

is 〈0, t1|0, t2〉K=K∗=0 = 1. How do we interpret the singularity at ν = ω in
the remaining integral? We should have inserted a convergence factor in the
original functional integral:

exp

(

i

∫

dν

2π
[. . .]

)

→ exp

(

i

∫

dν

2π
[. . . + iǫa(ν)a∗(−ν)]

)

, (2.111)

where ǫ goes to zero through positive values. Thus we have, in effect, ν − ω →
ν − ω + iǫ and so we have for the ground-state persistence amplitude

〈0, t1|0, t2〉K,K∗

= e−i
∫

dt dt′ K∗(t)G(t−t′)K(t′), (2.112)

which has the form of Eq. (2.91), with

G(t − t′) =

∫ ∞

−∞

dν

2π

e−iν(t−t′)

ν − ω + iǫ
, (2.113)

which is evaluated by closing the ν contour in the upper half plane if t− t′ < 0,
and in the lower half plane when t − t′ > 0. Since the pole is in the lower half
plane we get

G(t − t′) = −iη(t − t′)e−iω(t−t′), (2.114)

which is exactly what we found in Eq. (2.86).
Now, let us rewrite the path integral (2.106) in terms of coördinates and

momenta:

q =
1√
2ω

(a + a†), p =

√

ω

2

1

i
(a − a†), (2.115a)

a =

√

ω

2

(

q +
ip

ω

)

, a† =

√

ω

2

(

q − ip

ω

)

. (2.115b)

Then the numerical Lagrangian appearing in (2.106) may be rewritten as

L = ia†ȧ − ωa†a − Ka† − K∗a

= i
ω

2

(

q − i
p

ω

)

(

q̇ + i
ṗ

ω

)

− ω2

2

(

q2 +
p2

ω2

)

−
√

ω

2
K

(

q − ip

ω

)

−
√

ω

2
K∗
(

q +
ip

ω

)

= i
ω

4

d

dt

(

q2 +
p2

ω2

)

+ pq̇ − 1

2

d

dt
(pq) − 1

2
(p2 + ω2q2) −

√
2ωℜKq −

√

2

ω
ℑKp

=
d

dt
w + L(q, q̇, t), (2.116)
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where, if we set q̇ = p, the Lagrangian is

L(q, q̇, t) =
1

2
q̇2 − 1

2
ω2q2 + Fq, (2.117)

if
ℑK = 0, F = −

√
2ωℜK. (2.118)

In the path integral

[da][da†] = [dq][dp]

∣

∣

∣

∣

∂(a, a†)

∂(q, p)

∣

∣

∣

∣

, (2.119)

where the Jacobian is

∣

∣

∣

∣

∂(a, a†)

∂(q, p)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√

ω
2

√

ω
2

i√
2ω

− i√
2ω

∣

∣

∣

∣

∣

∣

= 1, (2.120)

and so from the penultimate line of Eq. (2.116), the path integral (2.106) be-
comes

〈0, t1|0, t2〉F =

∫

[da][da†] exp

[

i

∫ t1

t2

dt L(a, a†)

]

=

∫

[dq][dp] exp

[

i

∫ t1

t2

dt

(

pq̇ − 1

2
p2 − 1

2
ω2q2 + Fq

)]

. (2.121)

Now we can carry out the p integration, since it is Gaussian:

∫

[dp]ei
∫

dt[− 1

2
p2+pq̇] =

∫

[dp]ei
∫

dt[− 1

2
(p−q̇)2+ 1

2
q̇2]

= ei
∫

dt 1

2
q̇2
∏

i

∫ ∞

−∞
dpi e−

1

2
ip2

i
∆t. (2.122)

Here we have discretized time so that p(ti) = pi, so the final functional inte-
gral over p is just an infinite product of constants, each one of which equals
e−iπ/4

√

2π/∆t. Thus we arrive at the form originally written down by Feyn-
man,

〈0, t1|0, t2〉F =

∫

[dq] exp

{

i

∫ t1

t2

dt L(q, q̇, t)

}

, (2.123)

with the Lagrangian given by Eq. (2.117), where an infinite normalization con-
stant has been absorbed into the measure.


