Chapter 1

Classical Action Principles

1.1 Classical Lagrange-Hamilton Principle

This is sometimes referred to as the principle of least action. Let the classical
system under consideration be described by N generalized coordinates

q={qi}i=1,..N, (1.1a)

and the corresponding velocities

d
q {q . }i_iw.N (1.1b)

The dynamics of the system is specified by giving the Lagrangian, L = L(g, ¢, ).
The action W is the time integral of the Lagrangian from some initial time o
to some final time ¢,

Wia = [ deLig(e).0).1). (1.2)
2

The action principle states that under infinitesimal variations, the change in the
action depends only on the endpoints, that is,

SWia = G1 — G, (1.3)

where G, is a function depending only on dynamical variables at time ¢,. In
other words, the action is stationary with respect to variations between 2 and
1. This stationary property picks out the physical trajectory connecting gs, go
and ¢q1, q1-

The Lagrangian for a particle of mass m moving in a potential V(r) is

L=T-V=-mi?-V(), (1.4)
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where the independent variables are r and ¢. The possible variations are a
change in the path, Jr, and a change in the time of the endpoints dto, dt;.
However, for the latter it is more convenient to define a change in the time
parameter ¢ — t + 6t(t) where 0t(¢1) = dt1, dt(ta) = dte. Then

dt — d(t+dt) =dt (1 + %) (1.5a)

d dét\ d

Because of this change in ¢, the limits of integration in Wio are not changed.
We are now ready to compute the infinitesimal variation in Wis:

! dr d
oWig = /2 dt{mg . %(51‘ —or-VV(r)

dst dr\? dr\? dot
rn [2 (dt) — Vi) m<dt> dt}

[l ke (0]

+ 0t - [-mi — VV] +atd Bmfuv} } (1.6)

dt

Because dr and dt are independent variations, we conclude that

mi = ~VV, (1.72)
which is Newton’s law, and
dE 1
P 0, where E = amf'2 + V(r) is the energy, (1.7b)

which is the statement of energy conservation. What is left of the variation
comes only from the endpoints, so we infer the form of the “generators,”

G =p-ér— Eét, p = mi = momentum. (1.8)

Let us repeat this analysis for a general Lagrangian, L(q;, g;,t). In the fol-
lowing we will adopt a summation convention of summing over repeated indices
i. We find

oL d oL dot oL . dét
6W12_/ dt{a @t 50t T g, dt}

d [OL oL .
Ldt{dt {a ‘5‘“‘”( aqﬂlﬂ

d oL  OL d oL |
+6q; ( @aq T 8_) + 5t — (L— 6_@%) } (1.9)
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From the interior terms we deduce
d OL OL
dtdg;  9q;
which is the Euler-Lagrange equation, and the equation of energy conservation
(this assumes that there is no explicit time dependence!),

(1.10)

%H =0, (1.12)
where the energy or Hamiltonian is
H =p¢; — L, (1.13)
in terms of the generalized momentum
Di = gi , (1.14)
Finally, the generator has the form
G = p;dq; — Hot. (1.15)

Let us now return to the simple one-particle system and write the Hamilto-
nian: )
Lp
Hp,r)=p-T—L=-—

(p,r)=p 5o

We are now to regard r, p, and ¢ as independent variables. Then the variation
of the action is

1 dr
5W12=5/2 dt(p-%—H>

1
:/ dt[piér—dr-a—H+5p dr 5p-8—H—d—5tH]
9 dt Or

YVE) =T+ V. (1.16)

Cdt Jp dt
1
d dp OH
= | at! S p-or—Hst+or |- 2L
/2 {dt[p ' I+dr [ dt 81‘]
dr  OH dH
op-|—— — ot— 3. 1.17
+p[dt E)IJJr dt} (L.17)
From this we infer the three Hamilton’s equations,
dr OH p
— = == h 1.18
o ap m ere, (1.18a)
dp OH
— = = h 1.1
o o VYV  here, (1.18b)
dH
o _ 1.1
pr 0 (1.18¢)
LIf there is explicit time dependence, the equation satisfied by the Hamiltonian is
dpy_ 2 (1.11)

a ot
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The generators are

G=p-or— Hot. (1.19)
The generalization to H(q;,p;) is immediate:
k- 1.20
& = op (1.20a)
= — 1.20b
p o0’ (1.20b)
dH OH
—_— = 1.20
it~ ot (1.20c)
now allowing for explicit time dependence. The generators are

Suppose we counsider a function of the dynamical variables, f(q;,p;,t). Its
time derivative is

df _ Of , 0f da; | Of dp

dt 9t  Og; dt  Op; dt
of OHOf 0HOf

= — 1.22
ot~ Op; 9q;  Oq; Op; (1.22)
We define the Poisson bracket by
of dg  Of Og
= - - = 1.23
tg} Opi Oq;  Oq; Op;’ (1.23)
so we have J of
—f=—=+4+{H, f}. 1.24
Sr="Lh g (1.24)
Thus, if the following two conditions hold,
1. there is no explicit time dependence of f,
of
- = 1.2
5 = 0 (1.25a)
and
2. the Poisson bracket of f and H vanishes,
{#, f} =0, (1.25b)

then f is a constant of the motion.

It is sometimes useful to adopt a viewpoint intermediate between that of
Lagrange and that of Hamilton. Let us write for the Lagrangian of our single
particle system

I
|
=
=
©
")

(1.26)
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where 1
H(r,p,v)=p-v— §m02+V(r). (1.27)

We are now to regard r, p, and v as independent variables. Then the variation
of the action is

! d oH
5W12 = \/2 dt{p &(Sr*(srg

. [dr OH OH détH}

i ap) Vv T a

Yofd
:A dt{a[pﬁr—H&]

—or - [d_p+8_H +5p. [@_8_11]

dt ~ Or | dt  Op
oOH d
—Ove e +§%H}. (1.28)
This implies the four “equations of motion,”
dp OH
S (= —=VV  here), (1.29a)
% = 88—1;] (=v here), (1.29b)
OH
0= v (=p—mv here), (1.29¢)
dH
— = 1.29d
oo (1.294)
and the generator
G=p-ér— Hét. (1.29¢)

1.1.1 Generators
The generators interrelate conservation laws and invariances of the system.

1. Suppose the action is invariant under a rigid displacement (translation) of
the coordinate system:

(5W12 = 0 = P1- (51‘1 — P2 51‘2, (130)
where dr; = drs for a rigid displacement. Then

P1 = P2, (1.31)

that is, momentum is conserved. By our equations of motion, this will be
true, of course, only if V' is constant. Conversely, if V is constant, W is
invariant under a translation of the coordinate system.
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2. If W is invariant under a rigid displacement in time (time translation, for
which (Slfl = (Slfg)
Wi =0 = —H6t1 + Hydts, (1.32)

which implies
Hy, = Ho, (1.33)

that is, energy is conserved. This is consistent with our equations of
motion, unless H has ezplicit time dependence, in which case

% = 86_13 (1.34)
3. Suppose W is invariant under rigid rotations,
dr = dw X r. (1.35)
Then
0=06Wi2 = p1-0r; — p2 - 0re
= dw-(r; X p1 — Iz X pa), (1.36)

which means that L = r x p is conserved. This will be true here provided
V(r) =V(|r|).

1.2 Classical Field Theory

Let us move on to classical field theory by writing down the appropriate La-

grangian for relativistic classical electrodynamics®:

dr v2 e
L= E Pk - (d_tk - Vk> - mozccz\/ 1- C—’; + ?kUZAu(rk)
k
1 1
+ / (dr) [—§F“”(8MA,, _ 0,4+ ZF*”’FW} , (1.37)

where mgy, is the rest mass of the kth particle, which has velocity vy, position
ri, and momentum pg. Appearing here is the four-velocity

v = (¢, vi), that is vf = ¢, v} = v}, (1.38)

where we have adopted the usual convention that Greek indices run over four
values, u = 0,1, 2,3, while Latin indices take on only the three spatial values,
i =1,2,3. Note that

dt v* = (cdt,dr) (1.39)

2For motivation, see J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-y. Tsai,
Classical Electrodynamics (Perseus (Westview Press), New York, 1998)
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is a four-vector. The four-gradient is

10
au - (E&av> ) (140)

and the four-vector potential is
Al = (¢, A), (1.41)

in terms of the usual scalar (¢) and vector (A) potentials. F'*¥ is the electro-
magnetic field strength tensor, which is antisymmetric,

- (1.42)

and therefore has six distinct nonzero components which are the electric and
magnetic field strengths,

FY% = E! F9=9kB,, (1.43)
where the antisymmetric tensor (Levi-Civita symbol) is defined by
L I PR £ QU 2 S [ — (1.44)

Indices are lowered with the metric tensor

—-1000
0100
0 001
so for example
A,LL = g;tl/AV = (_¢7A)1 (146)

and the summation convention over repeated indices is used.
Let us work out the four independent variations of L with respect to particle
variables: (Vj = 9/0ry)

d d e
or,: O0L = E(érk - Pk) + Org - (—% + ?kngkAu(rk)> , (1.47a)
Spr: OL = opy- (% - vk> , (1.47b)
Mok VE €Lk
Svi: 0L = ovi- | —pr+ —m2VE L TR A )], 1.47
v v ( Y A ’”) (147
d dH
§t: 0L = - (—Hét)+6tS 1.47d
(—H) + 5t (1.470)

so the action principle implies

ClI‘]C

E, (148&)

Vi =
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Mok VE €k
= —— + —A(rg), 1.48b
Pk W c (r) ( )
dpk €k L
W = ?Vk’UZAM(rk), (148C)
dH
— =0 1.48d
=0, (1.484)
where the Hamiltonian has a particle and a field part,
H =" H,+ Hy, (1.49)
k
where
[ v e
H, = pr-vi+ 777,01602 — ?126 — ?kaA“(I‘k)
2
mogC
= ———— + epo(ry), 1.50
i k®(Tr) (1.50)

where Eq. (1.48b) was used to eliminate pg, and the field part will be given
below.
We continue by working out the field variations of Eq. (1.37):

0A,: 0L = /(dr) 04, (j* — O F*)+ 0, (6A,F*)], (1.51)
where the current density is
Jr) =37 ool —xi) = (p.J). (152)
k
so that
[, w5 - > % 4y A (). (1.53)

The two remaining variations are

SFH . 5L = / (dr)sFH {;(QLA,&,A“)JrIF } (1.54)

2° M
§t: Wy = /dt(dr)% [—Fi”aiAy + %F*‘”FW] : (1.55)
The action principle thus implies Maxwell’s equations,
Fu = 0,A, — 0,A,, (1.56a)
o, FH = j# (1.56b)

and gives the field part of the Hamiltonian,
. 1
Hf = /(dr) |:F“/8iAl, - ZF””FMV]

:/(dr) {E~V¢+B-VXA+%(E2—BQ)}. (1.57)
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But using the field equations that give the construction of the field strengths in
terms of the potentials,

, , ‘ 0A;
Ei=-F%=-9'A" +3°A" — —V,;¢p — —, (1.58a)
cot
1
the field part of the Hamiltonian becomes
1
y = [l |5+ %) - ] (159)

since V - E = p. Notice then that the total Hamiltonian, from Egs. (1.59) and
(1.50) is simply, from Eq. (1.52)

H= Zm0k02(1 e /(dr)%(E2 + B?), (1.60)
k

the sum of the free particle Hamiltonians and the pure field part. It appears
that the interaction has disappeared. This, of course, is not the case, because
E, B depend on the particle positions and velocities.

What about the generators? From Eqs. (1.47a), (1.47d), and (1.51) we have

c

G=> or, pip— 1/(dr)aA -E — Hét. (1.61)
k

This says that just as px is canonically conjugate to ry, —E is cononically
conjugate to A/c. In fact, if we introduce the Lagrange density according to

L= /(dr)ﬁ, (1.62)
we have from Eq. (1.37),
ca—L.: = —F% = _F" (1.63)
04,

[CE. Eq. (1.14).]

1.2.1 Field Momentum and Angular Momentum
Consider a displacement of the origin of the coordinate system,

r —r+0r, (1.64)

which is sketched in Fig. 1.1. A quantity F' which is coordinate independent is
a different function of the old and new coordinates:

F(r) = F(r + 0r), (1.65)
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new old

T+ or

Figure 1.1: Description of a physical point P in two different coordinate systems,
labeled “old” and “new,” that differ by a displacement Jr.

that is, the “new” function of the “new” coordinate is the same as the “old”
function of the “old” coordinate. Because the change in coordinates is infinites-
imal, the new function differs only slightly from the old function,

F(r) = F(r) + §F(r), (1.66)

” 0F(r) = F(r —r) — F(r) = —dr- VF(r). (1.67)

The field generator corresponding to this coordinate displacement thus is
Gy = —%/(dr)éA-E = /(dr)[(ér-V)A] -E
= —%/(dr)[&'x (VxA)—ér- (V) -Al-E
= %/(dr)[(E x B)-dér— (V-E)(A-r)]

- %/(dr)(E xB)-dr - %A(rk) o, (1.68)
k

where we used V - E = p and Eq. (1.52). The total generator corresponding to
the coordinate displacement is

G=> G,+Gy=P-or, (1.69)
k
where the total momentum is, from Eqgs. (1.61) and (1.68),
P = - —A dr)E x B
et o
k

where we have used Eq. (1.48b) and introduced the relativistic mass

my = mop(1 —vE/c?) V2. (1.71)
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The corresponding expression for the angular momentum is worked out in
the homework:

J:Zrkxmkvk—&—%/(dr)rx (E x B). (1.72)
k

1.3 Energy-Momentum Tensor

Now, let us consider how fields transform under four-dimensional (space-time)
coordinate transformations. For a scalar field, the field is the same at the same
physical point, so

o(z) = ¢(x), (1.73)
where for an infinitesimal transformation
Th = ot + dxt, (1.74)
so expanding the field,
o(x) = ¢(z) + d¢(z) = ¢(x — dx)
= ¢(z) — O, o(x)dx*, (1.75)
or
d¢p = —0x"0,,¢. (1.76)
Take the derivative of this:
0,00 = 6(0,¢) = —0270,0,¢ — (0,02")0, . (1.77)

We will take this to be the rule for how a vector field transforms:
0A, = —dx"0,A, — A,0,0z". (1.78)

A check of this last result is provided by considering a rigid spatial transla-
tion,

dz, = (0,6r), 0,0z, =0. (1.79)
Then the rule (1.78) implies correctly [cf. Eq. (1.67)]

0A, =—0r-VA,. (1.80)
For a rigid rotation
0z, = (0,w X r), (1.81)
S0
&»&cj = aiEjkl(kaal‘l = ejkiéwk, (1.82)

the transformation of a three-vector field is

SA = —(6r- V)A + 6w x A. (1.83)
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The last term here says that A, like r, is a vector.
A tensor transforms by the obvious generalization of the transformation law
for a vector:

6F,, = =62 0\F, — (8,02 Fy, — (0,02 F,», (1.84)

which is consistent with the result found in the homework.
Now let us calculate the change in the field part of the electrodynamic La-
grangian (1.37)

1 1
Ly - / (dr) [—iFW(auAV — Oy Ay) + (P | (1.85)
or better, the change in the corresponding action
W = /dtL, (1.86)

where now we take the integration to be over all time. Then the Lagrange
density L is defined by

W= / (dz)L, (dz) = dt(dr). (1.87)

If we substitute the field strength construction F},, = 9,4, — 0, A, the change
of the Lagrange density under a coordinate transformation is

oL

1 1
— 5 0Fu P = iéx)‘(aAF#,,)F*”’ + (8,62 Fy, F™

= 02 L + FMFY 0,0z,
—0x(62*L) + "' 9,6, (1.88)

where the electromagnetic energy-momentum or stress tensor is

1
th = FPARY\ 4 gL, L= jFQﬁFag. (1.89)

Notice that the energy-momentum tensor is symmetric,
th =", (1.90)

When the region we are considering contains no charges, §W = 0 by the sta-
tionary action principle,

0=0W = /(dx)t“”@uéxl, (1.91)

up to a surface term, so since the variation dz, is arbitrary at every point in
spacetime,
Outh” = 0. (1.92)
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This conservation law, which is the local statement of energy-momentum conser-
vation, may be directly verified using Maxwell’s equations. How this is modified
when currents are present is also given in the homework.

Let us examine the explicit components of t#¥. The time-time component is
the energy density:

7 1 [e%
t00 = pUiE0, 4 ZF PF.s

1 1
= FE* - 5(E2 - B?%) = 5(E2 + B?). (1.93)
The time-space components are the momentum density,
9 =0 = U, = BIIR By, = (E x B),. (1.94)

The stress tensor, which measures the flux of the ith component of momentum
crossing a surface perpendicular to the jth direction, is

ti = FOFI, 4 Fikpik 4 ik (—ZFWF&B>

- 1
= —E,E; + %k BB, + 5(Sij(E“‘ - B?). (1.95)
If we use the identity
€iki€km = 0ij01m — dimOj, (1.96)

we can write the result in dyadic notation

1
t:fEEfBB+§1(E2+Bz). (1.97)

1.3.1 Scale Invariance

It is of some significance that the Maxwell stress tensor is traceless:
1
t=t*\=F*"F,5+4 (‘Z) FPF,5=0. (1.98)

This reflects the scale invariance of the Maxwell theory.
A scale transformation is a particular kind of coordinate transformation,
oxt = daxt. (1.99)

Under such a transformation, the action changes by
SW = /(dx)t‘“’aﬂzsxu = /(dx)t‘“’ (0a guy + x,0,0a), (1.100)

which, because t = 0, indeed vanishes if da is constant, and, generally, by the
action principle implies
Oy (z, ") = 0. (1.101)

The conserved current here,
=z, th (1.102)

is called the scale current.



