
Chapter 8

A Synopsis of QED

We will here sketch the outlines of quantum electrodynamics, the theory of
electrons and photons, and indicate how a calculation of an important physical
quantity can be carried out in that theory.

8.1 Photons

The photon is a massless particle of helicity one, that is, the projection of its
spin along its direction of motion (it necessarily travels at the speed of light
because it is massless) is ±1. It is described by the Maxwell Lagrange density,

LA = −
1

4
FµνFµν + JµAµ, (8.1)

where the field strength Fµν is related to the vector potential by

Fµν = ∂µAν − ∂νAµ, (8.2)

and Jµ is the electric current density, a prescribed source. If we require that
the corresponding action

W [J,A] =

∫

(dx)LA (8.3)

be stationary under variations in A, we obtain Maxwell’s equations in the form

∂νF
µν = Jν . (8.4)

Due to the antisymmetry of the field-strength tensor, Fµν = −F νµ, we learn
that the electric current must be conserved,

∂νJ
ν = 0. (8.5)

As a consequence, we further see that the vector potential is not unique: we can
make a gauge transformation

Aµ → Aµ + ∂µλ (8.6)
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with an arbitrary function λ(x) without changing the action or the field strength.
If, quantum-mechanically, we wish to describe the exchange of a photon be-

tween two specified currents Jµ, we can effectively eliminate the vector potential
by the action-at-a-distance statement (up to a gauge transformation)

Aµ(x) =

∫

(dx′)D+(x− x′)Jµ(x′). (8.7)

Here D+ is just the massless propagator,

D+(x − x′) = ∆+(x− x′;m2 = 0) =

∫

(dk)

(2π)4
eik·(x−x′)

k2 − iǫ
. (8.8)

Then is is easily seen that

W [J ] =

∫

(dx)(JµAµ −
1

4
FµνFµν)

=
1

2

∫

(dx)JµAµ

=
1

2

∫

(dx)(dx′)Jµ(x)D+(x− x′)Jµ(x). (8.9)

8.2 Electrons

Dirac discovered spin, and antiparticles, by trying to take the square root of
the Klein-Gordon equation. The latter is a second-order equation, but is rela-
tivistically invariant. Dirac sought a first-order equation which was also Lorentz
invariant. This was only possible by introducing matrices, the famous Dirac ma-
trices. For massive particles, it turns out that the simplest possibility for these
matrices is that they be four by four. In modern notation, the Dirac equation
is

(

γµ 1

i
∂µ +m

)

ψ(s) = η(x), (8.10)

where η is a source for the electron field ψ. This is a “square root” of the
Klein-Gordon equation in that sense that

(

γµ 1

i
∂µ −m

) (

γν 1

i
∂ν +m

)

= −γµγν∂µ∂ν −m
2

= ∂2 −m2, (8.11)

just the operator appearing in the Klein-Gordon equation (3.3) provided the
gamma matrices satisfy the following anticommutation relation,

{γµ, γν} = −2gµν. (8.12)

The relation between the effective field ψ and the source η can be written in
terms of the Green’s function

ψ(x) =

∫

(dx′)G+(x − x′)η(x′), (8.13)
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where from Eq. (8.10) G+ must satisfy
(

γµ 1

i
∂µ +m

)

G+(x− x′) = δ(x− x′), (8.14)

which from Eq. (8.11) is immediately solved in terms of the scalar propagator
∆+:

G+(x− x′) =

(

m− γµ 1

i
∂µ

)

∆+(x− x′)

=

∫

(dp)

(2π)4
m− γ · p

m2 + p2 − iǫ
eip·(x−x′), (8.15)

or in momentum space

G+(p) =
1

m+ γ · p− iǫ
. (8.16)

The exchange of an electron between electron sources is described by the
vacuum persistence amplitude

〈0+|0−〉
η = exp

[

i

2

∫

(dx)(dx′)η(x)γ0G+(x− x′)η(x′)

]

. (8.17)

The appearance of γ0 is required by Lorentz invariance; it plays the role of
a metric tensor in forming the scalar product of the spinors. But there is
something somewhat peculiar here: it is easily shown that γ0G+(x − x′) is
totally antisymmetrical,

[γ0G+(x− x′)]T = −γ0G+(x′ − x), (8.18)

where the T superscript signifies transposition. [We use the so-called Majorana
representation, where γ0γµ is symmetrical, and γ0 is antisymmetrical,

(γ0γµ)T = γ0γµ, (γ0)T = −γ0.] (8.19)

If the sources were ordinary numbers, this would mean that the vacuum persis-
tence amplitude is identically unity, indicating the absence of any such particle.
We are forced to conclude that the fermionic sources are anticommuting num-
bers, that is, elements of a Grassmann or exterior algebra:

ηζ(x)ηζ′ (x′) = −ηζ′(x′)ηζ(x), (8.20)

where the subscripts indicate the four spinorial components. From this, one may
easily show that the unitarity (probability conservation) property is satisfied,

|〈0+|0−〉|
2 ≤ 1. (8.21)

The action for the free electron inferred from Eq. (8.17) is

W [η, ψ] =

∫

(dx)
[

η(x)γ0ψ(x) + L(x)
]

, L = −
1

2
ψγ0

(

γµ 1

i
∂µ +m

)

ψ,

(8.22)
which when varied with respect to ψ yields the Dirac equation (8.10).
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8.3 Quantum Electrodynamics

The route to spinor electrodynamics is through gauge transformations. Implicit
in such is the notion that the electron possesses electric charge. We can describe
the electron with a real field and an imaginary charge matrix q (see homework),
or, more conventionally, by letting ψ be complex. In the latter formulation, we
write the action as

W [η, J ;ψ,A] =

∫

(dx)(η̄ψ + ψ̄η + JµAµ + L), (8.23)

with the Lagrange density

L = −
1

4
FµνFµν − ψ̄

(

γµ 1

i
Dµ +m

)

ψ, (8.24)

in terms of the field strength (8.2), the covariant derivative

Dµ = ∂µ − ieAµ, (8.25)

and where the overbar means

η̄ = η†γ0, ψ̄ = ψ†γ0. (8.26)

This action is invariant under gauge transformations, where the covariant deriva-
tive term has a cancellation between the transformation of the photon field,

Aµ → Aµ + ∂µλ, (8.27)

and the phase transformation of the electron field,

ψ → eieλψ. (8.28)

Variation of this action under ψ̄, ψ, and A variations lead to the expected field
equations

δψ̄ :

(

γµ 1

i
Dµ +m

)

ψ = η, (8.29a)

δψ : ψ̄

(

−γµ 1

i

←−
Dµ +m

)

= η̄,
←−
Dµ =

←−
∂ µ + ieAµ, (8.29b)

δAµ : ∂νF
µν = jµ + Jµ, jµ = eψ̄γµψ. (8.29c)

(It is easy to verify that the two forms of the Dirac equation are equivalent.)
From this action, we can read off the Feynman rules for QED:

1. An electron line (represented in our figures by a solid line) carrying mo-
mentum p corresponds to the amplitude

−i

m+ γ · p− iǫ
= −i

m− γ · p

m2 + p2 − iǫ
. (8.30)
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Figure 8.1: Order α vacuum polarization.

2. A photon line (represented in our figures by a wiggly line) carrying mo-
mentum k is represented by the amplitude

−i

k2 − iǫ
. (8.31)

3. A vertex coupling a photon with incoming momentum k, an electron with
incoming momentum p1, and a electron with outgoing momentum p2 is
represented by the amplitude

−ieγµ(2π)4δ(k + p1 − p2). (8.32)

4. For external on-shell lines supply an appropriate wavefunction: a polar-
ization vector eµ

pλ for a photon, and spinors upσ, u∗pσγ
0 for electrons.

5. A factor of −1 must be supplied for each closed electron loop.

6. There also are − signs coming from the permutation of external fermion
lines.

In Fig. 8.1 we show the Feynman diagram corresponding to the O(e2) cor-
rection to the photon propagator, the so-called vacuum polarization. According
to the above rules, it corresponds to the amplitude

−

∫

(dp)

(2π)4
Tr (−ieγµ)

−i

m+ γ · p− iǫ
(−ieγν)

−i

m− γ · (p+ k)− iǫ
, (8.33)

where Tr stands for the trace over the Dirac matrices.
A few more words about the electron spinors. In the rest frame of the

electron, we have the spinors vσ, which are eigenvectors of the third component
of spin and of γ0:

σ3vσ = σvσ, γ0vσ = vσ, (8.34)

and are normalized according to

v†σvσ′ = δσσ′ . (8.35)

The spinors upσ are obtained from these by a boost:

upσ =

√

p0 +m

2m
vσ +

√

p0 −m

2m
v∗−σ. (8.36)
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Figure 8.2: Radiative correction to the propagation of an electron in an external
magnetic field H .

These satisfy the momentum-space Dirac equation

(m+ γp)upσ = 0, (8.37)

and the projection operator that annihilates such solutions has the resolution

m− γp

2m
=

∑

σ

upσu
†
pσγ0. (8.38)

8.4 The Anomalous Magnetic Moment of the

Electron

Here we offer a derivation of the electron’s g− 2 anomaly based on a correction
the the electron propagator in an external magnetic field H. Consider the
process shown in Fig. 8.2. When H = 0 the vacuum persistence amplitude for
this process is given by

(ie)2

2

∫

(dP )

(2π)4
ψ(−P )γ0γµ

∫

(dk)

(2π)4
−i

k2

−i

m+ γ · (P − k)
γµψ(P ). (8.39)

To incorporate the effects of the magnetic field, we make the minimal substitu-
tion, with q being the charge matrix,

q =

(

0 −i
i 0

)

, (8.40)
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P → Π = P − eqA, (8.41)

so the gauge-covariant momentum satisfies

[Πµ,Πν ] = ieqFµν , (8.42)

in terms of the field strength tensor, assumed here constant. Further, we com-
pute

(γ · Π)2 =
1

2
{γµ, γν}ΠµΠν +

1

2
[γµ, γν ]ΠµΠν

= −Π2 − iσµν i

2
eqFµν

= −Π2 + eqσF, σF =
1

2
σµνFµν = σ ·H, (8.43)

for the case of an external magnetic field. The electron propagator then is

1

m+ γ · (Π− k)
=

m− γ · (Π− k)

m2 + (Π− k)2 − eqσF
. (8.44)

As we have seen before, it is useful to combine the denominators in an
exponential representation. Write

1

k2

1

(Π− k)2 − eqσF +m2
= −

∫ ∞

0

ds1 ds2 e
−is1k2−is2[(Π−k)2−eqσF+m2 ]

= −

∫ ∞

0

ds s

∫ 1

0

du e−isχ(u), (8.45)

where we have introduced

s1 = s(1− u), s2 = su, (8.46)

and

χ(u) = (1− u)k2 + u[(Π− k)2 − eqσF +m2]

= (k − uΠ)2 + u(1− u)Π2 + u(m2 − eqσF ). (8.47)

Now we carry out the k integration by a Euclidean rotation,

∫

(dk)

(2π)4
e−isk2

= i

∫

(dk)E

(2π)4
e−isk2

E = −
i

16π2s2
. (8.48)

so then we have here for the basic integral

∫

(dk)

(2π)4
e−isχ(u) = −

i

16π2

1

s2
e−isu2(m2−eqσF )e−isH, (8.49)

where

H = u(1− u)(Π2 +m2 − eqσF ) = u(1− u)[m2 − (γ ·Π)2]. (8.50)
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Here, in doing the k integration, we have ignored the noncommutativity of Π,
because this would give rise to a term proportional to [Πµ,Πν ]Fµν ∝ F

2, which
is irrelevant for the magnetic moment term, which is linear in F .

What actually appears in the P → Π generalization of Eq. (8.39) is

e2
∫

(dk)

(2π)2
γµ[m− γ · (Π− k)]e−isχγµ

= e2
∫

(dk)

(2π)4
{[m+ γ · (Π− k)]γµ + 2(Π− k)µ}e−isχγµ. (8.51)

By virtue of the external Dirac field, we can set (on the outside) γ ·Π+m→ 0;
then we can do the k integration by writing it in terms of

∫

(dk)

(2π)4
(k − uΠ)µe−isχ. (8.52)

This would be zero if the Πs were commuting variables. Although they are not,
we get here something proportional to FµνΠν , which is contracted with γµ:

γµF
µνΠν =

i

2
[σF, γ ·Π +m]→ 0, (8.53)

where again we have ignored the F dependence in χ. So, in the numerator we
may replace kµ by uΠµ. The expression (8.51) is then, to O(F ) is (α = e2/4π)

−
ie2

16π2

1

s2
e−isu2m2

[−γ · uΠγµ + 2(1− u)Πµ] e−isH
(

1 + isu2eqσF
)

γµ

→ −
iα

4π

1

s2
e−ism2u2

m
[

uγµe−isH(1 + isu2eqσF )γµ

− 2(1− u)e−isH(1 + isu2σF )
]

, (8.54)

where we have again used Eq. (8.53). Now we evaluate this by putting the
isu2eqσF term in the exponent:

γµe−is(H−u2eqσF )γµ = γµ
[

e−is[u(1−u)(Π2+m2)](1 + isueqσF )
]

γµ

= −4e−isu(1−u)(Π2+m2) = −4e−isu(1−u)[m2−(γ·Π)2+eqσF ]

= −4e−isH [1− isu(1− u)eqσF ]

→ −4 [1− isu(1− u)eqσF ] , (8.55)

where in the second line we have used the fact that γλσαβγλ = 0. Thus we have
from Eq. (8.54),

−
iα

4π

1

s2
e−ism2u2

m
{

−4u[1− isu(1− u)eqσF ]− 2(1− u)(1 + isu2eqσF )
}

= −
iα

4π

1

s2
me−ism2u2 [

−2(1 + u) + 2isu2(1− u)eqσF
]

. (8.56)
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The first term here describes a modification of the electron propagator, which
is involved in renormalization of the mass of the electron. The second term is
what is of interest here:

α

2π

m

s
u2(1− u)e−ism2u2

eqσF. (8.57)

The integrals over the parameters s and u are as follows:

∫ ∞

0

ds s

s

∫ 1

0

du u2(1− u)e−isu2(m2−iǫ) = −
1

im2

∫ 1

0

du (1− u) =
i

2m2
, (8.58)

and then the vacuum amplitude (8.39) is

i

2

∫

(dx)ψ(x)γ0 eq

2m
σF

α

2π
ψ(x). (8.59)

This is interpreted as a correction to the g-factor of the electron, where g = 2
for a particle described by the Dirac equation:

g − 2

2
=

α

2π
=

1

2π

1

137.036
= 0.0011614, (8.60)

which is to be compared to the latest experimental value

(

g − 2

2

)

exp

= 0.00115965218073(28); (8.61)

the discrepancy is entirely due to higher order QED effects, which have been
computed out to 10th order! Using these calculations, we can infer an incredibly
accurate value of the fine structure constant,

α−1 = 137.035999084(51). (8.62)

For the latest experimental results, see Gabrielse et al., Phys. Rev. Lett. 100,
120801 (2008).


