
Chapter 7

Spectral Representations

We have formulated perturbation theory in four-dimensional Euclidean space—
we now have to translate back into Minkowski space. There we use the metric
g00 = −1, g11 = g22 = g33 = +1. Recall our previous discussion of the prop-
agation function in Sec. 3.3. We pass from the Euclidean to the Minkowskian
propagator by

∆E(x − x′) → 1

i
∆+(x − x′), (7.1)

or in momentum space

1

p2 + m2
→ −i

p2 + m2 − iǫ
. (7.2)

The corresponding Minkowski-space Feynman rule for a line is shown in Fig. 7.1.

What about vertices? Because dx4 → i dx0, the interaction term in the
action becomes

−
∫

(dx)Eλφ4 → −i

∫

(dx)Mλφ4. (7.3)

Thus the vertex rule is as shown in Fig. 7.1. And, of course, loop integrations
are over (dk)M/(2π)4, (dk)M = dk0(dk). So, one can do perturbation theory

= −i
p2+m2

−iǫ
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Figure 7.1: Minkowski-space Feynman rules.
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directly in Minkowski space. But it may be simpler to calculate the Feynman
diagrams in Euclidean space and then translate the result to Minkowski space
by analytic continuation. For a diagram with L loops, V vertices, and I internal
lines, the Minkowski and Euclidean Green’s functions are related by

Γ
(n)
M (p1, . . . , pn; m2) = iI+V +L(−1)IΓ

(n)
E (p1, . . . , pn; m2 − iǫ), (7.4)

where the Euclidean Green’s function is evaluated at a complex Euclidean mo-
mentum,

p = (−ip0,p). (7.5)

In the relation (7.4) the factor (−i)I iV arises from the Minkowski Feynman
rules, while the iL comes from the correspondence i(dk)E = (dk)M . Now from
Eq. (5.55), L = I − V + 1, so the Minkowski and Euclidean Green’s functions
are related by

Γ
(n)
M (p1, . . . , pn; m2) = iΓ

(n)
E (p1, . . . , pn; m2 − iǫ). (7.6)

Consider the four-point function, described in Sec. 5.2.1, and Fig. 5.2. Using
the zero-momentum renormalization condition (5.26), or

Γ(4)

∣

∣

∣

∣

pi=0

= −4! λ = −(4π)2g, (7.7)

we have (although we have now dropped the caret over g, its appearance signi-
fying division by (4π)2 is retained for the Green’s function)

Γ̂(4)(p1, p2, p3) = −g + g2

[

3 − 1

2
A(s, t, u)

]

(7.8)

in Euclidean space. Here

A(s, t, u) =
∑

z=s,t,u

√

1 +
4m2

z
ln

√

1 + 4m2

z + 1
√

1 + 4m2

z − 1
. (7.9)

The translation of this into Minkowski space is immediate:

Γ̂
(4)
M (p1, p2, p3) = −ig + ig2

[

3 − 1

2
A(s, t, u)

]

, (7.10)

but now
s = (p1 + p2)

2 = (p1 + p2)
2 − (p0

1 + p0
2)

2, (7.11)

etc. Thus A(s, t, u) has singularities for physical values of the momenta.
Consider the function which appears in Eq. (7.9),

f(p2) =

√

1 +
4m2

p2
ln

√

1 + 4m2

p2 + 1
√

1 + 4m2

p2 − 1
. (7.12)
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When −p2 = 4m2 a branch point is encountered, and if −p2 > 4m2, f develops
an imaginary part.

Let x =
√

1 + 4m2/p2. If −p2 < 4m2, x = iy is imaginary, and

f = iy ln
iy + 1

iy − 1
= 2y arccot y (7.13)

is real. On the other hand, if −p2 > 4m2, 0 < x < 1, and

f = x ln
x + 1

x − 1
= −iπx + x ln

1 + x

1 − x
= −iπx + 2x arctanhx, (7.14)

so

ℑf = −iπ

√

1 +
4m2

p2
, −p2 > 4m2. (7.15)

This suggests a spectral representation (or a dispersion relation) for f ,

f(p2) =

∫

∞

4m2

dM2 a(M2)

p2 + M2 − iǫ
, (7.16)

where a(M2) is called the spectral function. From the property

1

x − iǫ
= P

1

x
+ iπδ(x) (7.17)

(P signifies the Cauchy principal value), we deduce from Eq. (7.15) that

a(M2) = −
√

1 − 4m2

M2
. (7.18)

Inserting this spectral function into the spectral representation (7.16) does not
result in a convergent integral. However, we note that we will obtain the same
imaginary part at p2 = −M2 if we insert the factor −p2/M2, so let us try the
“subtracted” relation

f(p2) = p2

∫

∞

4m2

dM2

M2

√

1 − 4m2

M2

p2 + M2 − iǫ
. (7.19)

[We call this a “subtracted” dispersion relation because

p2

M2

1

p2 + M2 − iǫ
=

1

M2
− 1

p2 + M2 − iǫ
, (7.20)

so the two representations (7.16) and (7.19) differ by an infinite constant.]
Now let us do the spectral integration in Eq. (7.19) to see if correctly repro-

duces the real part. Let

v =

√

1 − 4m2

M2
, 1 − v2 =

4m2

M2
, (7.21)
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so

2v dv =
4m2

M4
dM2 =

1

4m2
(1 − v2)2 dM2, (7.22)

so we have

f(p2) = 2p2

∫ 1

0

v2 dv

4m2 + p2(1 − v2)

=

∫ 1

0

dv

[

√

4m2 + p2

√

4m2 + p2 + pv
+

√

4m2 + p2

√

4m2 + p2 − pv
− 2

]

=

√

1 +
4m2

p2
ln

√

1 + 4m2

p2 + 1
√

1 + 4m2

p2 − 1
− 2, (7.23)

where the added constant assures that f(p2) → 0 as p2 → 0. Thus, up to that
constant, we have reproduced the function (7.12).

In terms of this spectral representation, the second-order contribution to the
four-point function (7.10) has the remarkably simple form

3 − 1

2
A(s, t, u) =

1

2

∫

∞

4m2

dM2

M2

√

1 − 4m2

M2

[

− s

s + M2 − iǫ

− t

t + M2 − iǫ
− u

u + M2 − iǫ

]

. (7.24)

It is important to note that the factor of −p2/M2 inserted into the spectral
integral does not change the imaginary part, but

1. makes the integral converge, and

2. guarantees that the normalization condition that the order g2 contribution
vanishes at s = t = u = 0 is satisfied.

7.1 Source Theory

Now we ask the question: Can we derive this very convenient and simple repre-
sentation directly?

Consider the causal arrangement shown in Fig. 7.2. Because of the casual
arrangement, where a real particle propagates from an earlier point x′ to a later
point x, we may use the propagator in the form (3.46), or

x0 > x′0 : ∆+(x − x′) = i

∫

dp̃ eip·(x−x′), dp̃ =
(dp)

(2π)32ωp
, (7.25)

where p0 = ωp =
√

p2 + m2. Thus, in place of (dp)/[(2π)4(p2 + m2)] for the
internal lines we use merely idp̃, so for the causal loop in Fig. 7.2

(−i)2
∫

(dp1)

(2π)4
(dp2)

(2π)4
(2π)4δ(p1 + p2 − p)

(p1 + m2 − iǫ)(p2 + m2 − iǫ)
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Figure 7.2: A causal arrangement in which two real particles are exchanged
between interaction points x′ and x, where the latter point is later in time than
the earlier point.

→
∫

dp̃1 dp̃2 (2π)4δ(p1 + p2 − p). (7.26)

Now we carry out the latter phase-space integral,

I =

∫

(dp1)

(2π)32ωp1

(dp2)

(2π)32ωp2

(2π)4δ(p1 + p2 − p)

=
1

(2π)2

∫

(dp1)

2ωp1

1

2ωp2

δ(p0
1 + p0

2 − p0), p2 = p− p1. (7.27)

Evaluate this by working in the rest frame of p, which for the situation envisaged
in Fig. 7.2 is assumed to be timelike: p = 0, p0 = M ≥ 2m, so that

p1 + p2 = 0, p0
1 + p0

2 = M, p0
i =

√

p2
1 + m2. (7.28)

Then

I =
1

(2π)2

∫

4πp2
1 dp1

4(p0
1)

2
δ(2p0

1 − M) =
1

4π

∫

dp0
1

p1

p0
1

δ(2p0
1 − M)

=
1

4π

1

2

√

(p0
1)

2 − m2

p0
1

∣

∣

∣

∣

∣

p0

1
= M

2

=
1

8π

√

1 − 4m2

M2
. (7.29)

For the general case when the masses are unequal, see Eq. (7.43). In coordinate
space, the causal contribution to the four-point function is

−λ2(4!)2
∫

(dp)

(2π)4
2πδ(p2 + M2)

dM2

2π

1

8π

√

1 − 4m2

M2
eip·(x−x′)

= −(4π)2g2

∫

dp̃|MdM2

√

1 − 4m2

M2
eip·(x−x′), (7.30)

which uses Eq. (3.11), with p0 =
√

p2 + M2. We recognize here the casual form
of the propagator (7.25),

x0 > x′0 : i

∫

dp̃|Meip·(x−x′) = ∆+(x, x′; M2), (7.31)
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which causal condition can be relaxed by using the general form of ∆+:

∆+(x − x′; M2) =

∫

(dp)

(2π)4
eip·(x−x′)

p2 + M2 − iǫ
. (7.32)

Then, back in momentum space we have for the second-order contribution to
the four-point function (a factor of 1/2 arise because the causal arrangement
could have either x0 > x′0 or the other way around)

Γ̂(4),2 = i
∑

p2=s,t,u

1

2
g2

∫

∞

4m2

dM2

√

1 − 4m2

M2

1

p2 + M2 − iǫ
+ c.t., (7.33)

where c.t. (contact term) is a constant, or a delta-function in coordinate space,
chosen to enforce the normalization condition that Γ(4),2 = 0 at s = t = u = 0,
that is, in effect,

1

p2 + M2
→ 1

p2 + M2
− 1

M2
= − p2

M2

1

p2 + M2
, (7.34)

and so the result (7.10), (7.24) is reproduced:

Γ̂(4),2 = −i
g2

2

∑

p2=s,t,u

p2

∫

∞

4m2

dM2

M2

√

1 − 4m2

M2

1

p2 + M2 − iǫ
. (7.35)

This is the essence of Schwinger’s source theory, in which no infinities are ever
encountered.

7.2 Cross Sections

We finally must address the question of how to proceed from the Green’s func-
tions we have calculated, which represent generalized scattering amplitudes, to
compute cross sections which can be measured in the laboratory. We first recog-
nize that for a weak source, the probability amplitude of producing (absorbing)
a particle of momentum p, within an element of momentum dp̃, is

〈p|0−〉K = i
√

dp̃K(p), 〈0+|p〉K = i
√

dp̃K(−p), (7.36)

which may be deduced by considering a source composed of two parts, K =
K1 + K2, where the support of K1 is entirely later than that of K2. Then

〈0+|0−〉K1+K2 ≈ 1 + i

∫

(dx)(dy)K1(x)∆+(x − y)K2(y) + . . .

= 1 −
∫

dp̃ K1(−p)K2(p) + . . .

=
∑

np

〈0+|np〉K1〈np|0−〉K2 , (7.37)
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where in the last line we are summing over all multiparticle states transmitted
between the earlier source and the later source. Here we have used the causal
form of the propagator

∆+(x − y) = i

∫

dp̃ eip(x−y), x0 − y0 > 0. (7.38)

The weak-source result (7.36) now follows.
Now we recall the definition of the 1PI Green’s functions. The vacuum

persistence amplitude corresponding to two particles coming in and two particle
going out of a collision process is

∫

(dx1)(dx2)(dx2)(dx4)φ̃1(x1)φ̃2(x2)φ̃3(x3)φ̃4(x4)Γ
(4)(x1, x2, x3, x4), (7.39)

where for x0 > y0

φ1(x) =

∫

(dy)∆+(x − y)K1(y) = i

∫

dp̃

∫

(dy)eip(x−y)K1(y), (7.40)

or in momentum space
φ1p = idp̃ K1(p). (7.41)

Thus we define the scattering amplitude as

〈p1p2|T |p3p4〉 =
√

dp̃1dp̃2dp̃3dp̃4Γ
(4). (7.42)

To get the probability for scattering, we take the absolute square of this am-
plitude, and integrate over the two outgoing (final state) momentum constrained
by energy-momentum conservation. In homework you will show
∫

dp̃a dp̃b δ(4)(pa+pb−P ) =
dΩ

32π2M2

[

M2 − (ma + mb)
2
]1/2 [

M2 − (ma − mb)
2
]1/2

,

(7.43)
where p2

a = −m2
a, p2

b = −m2
b, P 2 = −M2, and dΩ is the element of solid angle

for the relative momentum.
To define a differential cross section, we divide the above by the invariant

flux. The particle flux associated with a single particle in a small momentum
cell is

sµ = 2pµdp̃; (7.44)

for colliding beams, such as occur with the LHC, we have to combine two such
fluxes in an invariant way, such that it vanishes if the single particle fluxes are
proportional. The invariant flux is

F =
[

(sasb)
2 − s2

as2
b

]1/2
. (7.45)

In homework you will show

F = dp̃a dp̃b2
[

M2 − (ma + mb)
2
]1/2 [

M2 − (ma − mb)
2
]1/2

. (7.46)
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The common square root factors cancel for a purely elastic scattering process
where the initial and final particles are the same. Thus we find the differential
cross section

dσ

dΩ
=

|Γ(4)|2
64π2M2

. (7.47)

Here M2 = −s = 4E2, where E is the energy of either beam in the center-of-
mass frame. The other variables upon which the scattering amplitude depends
upon are (here p1 and p2 are incoming, p3 and p4 are outgoing)

t = (p1 − p3)
2 = 4p2 sin2 θ/2, u = (p1 − p4)

2 = 4p2 cos2 θ/2, (7.48)

where p =
√

E2 − m2 is the momentum of the particles in the center-of-mass
frame, and θ is the scattering angle. For further details, see homework.


