
Chapter 6

Renormalization Group

Let us return to the formula (5.42) relating the renormalized and the unrenor-
malized Green’s functions:

Γ
(n)
R (p1, . . . , pn;λ,m, µ, ǫ) = Zn/2Γ

(n)
0 (p1, . . . , pn;λ0,m0, ǫ), (6.1)

where

λ ≡ λR(λ0,m0, µ, ǫ), m ≡ mR(λ0,m0, µ, ǫ). (6.2)

Since the bare Green’s function is independent of µ, we have

0 =
d

dµ
Γ0 =

d

dµ
Z−n/2ΓR

= −
n

2
Z−n/2−1

(

d

dµ
Z

)

ΓR + Z−n/2

(

∂

∂µ
+
∂m

∂µ

∂

∂m
+
∂λ

∂µ

∂

∂λ

)

ΓR. (6.3)

Multiply this equation through by Zn/2µ and we find the so-called renormal-

ization group equation:

(

µ
∂

∂µ
+ β

∂

∂λ
− nγ +mδ

∂

∂m

)

ΓR = 0. (6.4)

Here the coefficients are

β

(

λ,
m

µ
, ǫ

)

≡ µ
∂λ

∂µ
, (6.5a)

γ

(

λ,
m

µ
, ǫ

)

≡
1

2
µ
∂ lnZ

∂µ
, (6.5b)

δ

(

λ,
m

µ
, ǫ

)

≡
1

2
µ
∂ lnm2

∂µ
, (6.5c)

Clearly the values of the coefficients depend on the values chosen for F , G, and
H , that is, on the renormalization scheme. A particularly simple choice is that
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of ’t Hooft and Weinberg, the “mass-independent” renormalization. It amounts
to setting

F = G = H = 0. (6.6)

Then, through order g2 we have from Eqs. (5.54) and (5.53)

ĝ0 = µǫ

(

ĝ + ĝ2 3

ǫ

)

, (6.7)

so if we regard ĝ0 as fixed,

0 = µ
∂ĝ0
∂µ

= ǫĝ0 + µǫ

(

1 +
6

ǫ
ĝ

)

µ
∂ĝ

∂µ
, (6.8)

so the beta function is through order g2

β(ĝ) = µ
∂

∂µ
ĝ = −ǫ

(

ĝ + ĝ2 3

ǫ

) (

1 −
6

ǫ
ĝ

)

= −ǫĝ + 3ĝ2

→ 3ĝ2 + O(ĝ3), as ǫ→ 0. (6.9)

Next, in this scheme, through second order, the wavefunction renormaliza-
tion constant is, from Eq. (5.49),

Z = 1 −
ĝ2

12ǫ
, (6.10)

so the gamma function is through this order

γ(ĝ) =
1

2
µ
∂ lnZ

∂µ
=

1

2
µ
∂

∂µ

(

−
ĝ2

12ǫ

)

= −
ĝ

12ǫ
µ
∂

∂µ
ĝ = −

ĝ

12ǫ
(−ǫĝ)

=
ĝ2

12
+ O(ĝ3). (6.11)

The bare mass is related to the renormalized mass by Eqs. (5.52) and (5.51),
or

m2
0 = m2

(

1 +
ĝ2

12ǫ
+
ĝ

ǫ
+

2ĝ2

ǫ2
−
ĝ2

2ǫ

)

, (6.12)

so because the bare mass does not depend upon µ,

0 = µ
∂m2

0

∂µ
= µ

∂m2

∂µ

(

1 +
ĝ

ǫ
−

5ĝ2

12ǫ
+

2ĝ2

ǫ2

)

+m2

(

1

ǫ
−

5ĝ

6ǫ
+

4ĝ

ǫ2

)

(−ǫĝ + 3ĝ2), (6.13)
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again using the first line of Eq. (6.9), so the third coefficient is

δ =
1

2

µ

m2

∂m2

∂µ

= −
1

2
(−ǫĝ + 3ĝ2)

(

1

ǫ
−

5ĝ

6ǫ
+

4ĝ

ǫ2
−
ĝ

ǫ2

)

= −
1

2

[

−ĝ + ĝ2

(

3

ǫ
+

5

6
−

3

ǫ

)]

+ O(ĝ3)

=
1

2
ĝ −

5

12
ĝ2 + O(ĝ3). (6.14)

Let us see how the renormalization group equation is satisfied. In lowest
order it reads

(

µ
∂

∂µ
+m

ĝ

2

∂

∂m

)

ΓR = O(ĝ2). (6.15)

The only Green’s function which has nontrivial dependence on µ andm in lowest
order in the mass-independent renormalization scheme is

Γ(2) = −(p2 +m2) +
1

2
ĝm2

[

ψ(2) − ln m̂2
]

, (6.16)

where we have merely cancelled the 1/ǫ divergence in Eq. (5.2). The derivatives
appearing in Eq. (6.15) are, because m̂2 = m2/(4πµ2),

µ
∂

∂µ
Γ(2) = ĝm2, m

ĝ

2

∂

∂m
m2 = ĝm2, (6.17)

so the renormalization group equation is satisfied through this order. Note
therefore that the renormalization group equation determines the coefficient of
the logarithm in Γ(2).

Let’s go to the next order and examine the equation satisfied by the four-
point function. From Eqs. (6.9), (6.11), and (6.14), the renormalization group
equation is

[

µ
∂

∂µ
+ 3ĝ2 ∂

∂ĝ
− 4

ĝ2

12
+m

(

1

2
ĝ −

5

12
ĝ2

)

∂

∂m

]

Γ(4) = 0, (6.18)

where, simply removing the divergent term from Eq. (5.13), we have at ǫ = 0

Γ̂(4) =
Γ(4)

(4π)2
= −ĝ

{

1 −
3

2
ĝ

[

ψ(1) + 2 − ln m̂2
]

+
ĝ

2
A(s, t, u)

}

. (6.19)

Again, the order ĝ2 terms cancel because

µ
∂

∂µ
Γ̂(4) = 3ĝ2, 3ĝ2 ∂

∂ĝ
Γ̂(4) = −3ĝ2 + O(ĝ3); (6.20)

again, the coefficient of the ln m̂2 term is determined.
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Now let us use the renormalization group to learn something we don’t know.
Consider Γ(2) in second order. Write

Γ(2) = −(p2 +m2) +
1

2
ĝm2

[

ψ(2) − ln m̂2
]

+ ĝ2m2f

(

m2

µ2
,
p2

m2

)

, (6.21)

Then the O(ĝ2) terms in the renormalization group equations are

0 = ĝ2m2
(

−2m̂2
) ∂

∂m̂2
f +

3

2
ĝ2m2

[

ψ(2) − ln m̂2
]

−
1

6
ĝ2(−p2

−m2) +
5

6
ĝ2m2 +

1

2
ĝ2m2

[

ψ(2) − ln m̂2
]

−
1

2
ĝ2m2

= ĝ2m2

{

−2m̂2 ∂

∂m̂2
f + 2

[

ψ(2) − ln m̂2
]

+
1

6

p2

m2
+

1

2

}

. (6.22)

This allows us to determine the m̂2 dependence of f :

f(m̂2, p2/m2) =

[

ψ(2) +
1

4

]

ln m̂2
−

1

2
ln2 m̂2 +

p2

12m2
ln m̂2 + g(p2/m2).

(6.23)

A direct proof of this m̂2 dependence will be given in the homework.
We may also obtain the p2 dependence of the two-point function in the

massless case. There we have the form

Γ(2) = −p2 + ĝ2p2h

(

p2

µ2

)

, (6.24)

and the renormalization group equation is through O(ĝ2)

−2
p2

µ2
ĝ2p2h′ +

1

6
ĝ2p2 = 0, (6.25)

or

h′ =
1

12

µ2

p2
, (6.26)

or

h =
1

12
ln
p2

µ2
+ constant, (6.27)

which is consistent with the result of Problem 9.2.

6.1 Running Coupling

The β function tells us how the coupling ĝ evolves with the mass scale µ. To
leading order

µ
∂ĝ

∂µ
= β(ĝ) = 3ĝ2, (6.28)
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β(λ)

λ
λ̄

Figure 6.1: Beta function for λφ4 theory. Shown is the infrared stable behavior
at λ = 0. Different possible evolutions are shown for large λ.

or
1

3

dĝ

ĝ2
=
dµ

µ
, (6.29)

which is integrated easily,

−
1

3

(

1

ĝ(µ)
−

1

ĝ(µ0)

)

= ln
µ

µ0
. (6.30)

Thais is

ĝ(µ) =
ĝ(µ0)

1 − 3ĝ(µ0) lnµ/µ0
. (6.31)

As µ increases, ĝ increases; perturbation theory can only be valid when

3ĝ(µ0) lnµ/µ0 ≪ 1. (6.32)

However, if we took this formula literally, it would say that ĝ = ∞ when

µ

µ0
= exp

(

1

3ĝ(µ0)

)

. (6.33)

This is the famous Landau singularity, or ghost pole. It is of no importance
in a weakly coupled theory like QED, but could be very important in strongly
coupled QCD.

A point at which β(λ) = 0 is called a fixed point. Here we have λ = 0 as
a fixed point, where β′(0) = 0, but β′′(0) > 0. The infrared behavior of β
is sketched in Fig. 6.1. The fixed point at zero coupling is an infrared stable
point. It means that the coupling λ increases as the distance decreases, or as
the energy increases.

Could there be another fixed point at λ = λ̄ as shown? If so, in the vicinity
of that point

µ
∂λ

∂µ
= (λ− λ̄)β′(λ̄), (6.34)

so if β′(λ̄) < 0 as shown, λ is driven toward λ̄:

1

β′

dλ

λ− λ̄
=
dµ

µ
, (6.35)
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β(g)

g

Figure 6.2: Beta function for quantum chromodynamics. Shown is the ultra-
violet fixed point at g = 0. Different possible evolutions are shown for large
g.

or
1

β′
ln(λ− λ̄) = lnµ/µ0 + constant, (6.36)

or

β′ < 0 : λ− λ̄ = constant

(

µ

µ0

)β′

→ 0 as µ→ ∞. (6.37)

Thus λ̄ is an ultraviolet stable fixed point.

Most theories, like this one, have an infrared stable fixed point at λ = 0.
QCD is the exception. There β(g) < 0 for small g, as sketched in Fig. 6.2.
Then g = 0 is an ultraviolet fixed point, and presumably g → 0 as µ→ ∞ (high
energies, or short distances). This phenomenon is known as asymptotic freedom.

6.2 Scaling

We can translate the renormalization group equation into one which tells us how
Green’s functions scale with momenta. We do this by combining Eq. (6.4) with
the fact that the “engineering” dimension of ΓR is 4−n+ ǫ

2 (n−2) (homework),
which means we can write

Γ
(n)
R (pi;m,µ) = µ4−n+(ǫ/2)(n−2)Γ

(pi

m
;
µ

m

)

, (6.38)

so we deduce that

µ
∂

∂µ
Γ

(n)
R +

[

4 − n+
ǫ

2
(n− 2)

]

Γ
(n)
R + µ4−n+(ǫ/2)(n−2) µ

m

∂

∂(µ/m)
Γ. (6.39)

On the other hand,

m
∂

∂m
Γ

(n)
R = µ4−n+(ǫ/2)(n−2)

[

−
∑

i

pi

m

∂

∂(pi/m)
−
µ

m

∂

∂(µ/m)

]

Γ. (6.40)
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Therefore,

µ
∂

∂µ
Γ

(n)
R =

{

[

4 − n+
ǫ

2
(n− 2)

]

−m
∂

∂m
−

∑

i

pi
∂

∂pi

}

Γ
(n)
R , (6.41)

or, if we scale all the momenta together,

pi → spi,
∑

i

pi
∂

∂pi
= s

∂

∂s
, (6.42)

we have

µ
∂

∂µ
Γ

(n)
R =

[

4 − n+
ǫ

2
(n− 2) −m

∂

∂m
− s

∂

∂s

]

Γ
(n)
R . (6.43)

Using this result, the renormalization group for Γ
(n)
R = Γ

(n)
R (spi;m,λ, µ) is

[

−s
∂

∂s
+ β

∂

∂λ
+ (δ − 1)m

∂

∂m
+ 4 − n− nγ

]

Γ
(n)
R = 0, (6.44)

where we have set ǫ = 0. You see now why γ is called the anomalous dimension.
In the ’t Hooft-Weinberg scheme, the coefficients β, δ, γ do not depend on m,
but only on λ, so the above equation may be integrated. Define scale-dependent
couplings and masses by

s
∂λ̄(s)

∂s
= β(λ̄(s)), (6.45a)

s
∂m̄(s)

∂s
= m̄(s)[δ(λ̄(s)) − 1], (6.45b)

subject to the initial conditions

λ̄(s = 1) = λ, m̄(s = 1) = m. (6.46)

Then the solution to the renormalization group equation is

Γ
(n)
R (spi;m,λ, µ) = s4−ne

−n
∫

s

1

ds
′

s′
γ(λ̄(s′))

Γ
(n)
R (pi; m̄(s), λ̄(s), µ). (6.47)

The proof of this result is quite immediate: Since the renormalization group
equation is true for any λ, m, it is also true that

{

−
∑

i

pi
∂

∂pi
+ β(λ̄(s))

∂

∂λ̄(s)
+ [δ(λ̄(s)) − 1]m̄(s)

∂

∂m̄(s)
+ 4 − n− nγ(λ̄(s))

}

×Γ
(n)
R (pi; m̄(s), λ̄(s), µ) = 0, (6.48)

which implies

0 = s
d

ds

[

s4−ne
−n

∫

s

1

ds
′

s′
γ(λ̄(s′))

]

Γ
(n)
R (s−1pi; m̄(s), λ̄(s), µ), (6.49)
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from which the result (6.47) follows.
Apart from the anomalous dimension effect, the Green’s functions are gov-

erned by λ̄(s), m̄(s), as we scale the momenta, pi → pis.
How does all this work for our λφ4 theory if we merely use our lowest-order

perturbative results? We have already studied the behavior of the running
coupling [we have dropped the caret, but 1/(4π)2 is still subsumed into g],

s
∂ḡ(s)

∂s
= 3ḡ2, ḡ(1) = g, (6.50a)

which has solution (6.31), or

ḡ(s) =
g

1 − 3g ln s
. (6.50b)

The running mass is governed by [see Eq. (6.14)]

s

m̄

∂m̄

∂s
= δ(λ̄(s)) − 1 = −1 +

1

2
ḡ(s) −

5

12
ḡ2(s), (6.51)

which implies, if we use Eqs. (6.50a) and (6.50b)

ln m̄(s) = − ln s−
5

36
ḡ(s) +

1

2

∫

ds

s

g

1 − 3g ln s

= − ln s−
5

36
ḡ(s) −

1

6
ln(1 − 3g ln s) + constant

= − ln s−
5

36
ḡ(s) −

1

6
ln[g/ḡ(s)] + constant. (6.52)

The solution of this equation is

m̄(s) =
m

s

(

g(s)

g

)1/6

e−
5

36
[ḡ(s)−g] (6.53)

which tends to zero as s→ ∞, which is to say that the mass becomes irrelevant
at high energy, as we would expect.

As for the anomalous dimension, we know from Eq. (6.11) that

γ(ḡ(s)) =
ḡ2(s)

12
=

1

36
s
∂ḡ

∂s
. (6.54)

Putting all this together, we learn the scaling behavior of the proper Green’s
functions,

Γ
(n)
R (spi;m, g, µ) = s4−n− n

36
[ḡ(s)−g]Γ

(n)
R (pi; m̄(s), ḡ(s), µ). (6.55)

Of course, these results break down for large s, where the Landau singularity in
ḡ(s) is approached.


