
Chapter 5

Renormalization

What sense can we make of a divergent diagrammatic expansion? We will
see that it is possible, to any finite order in λ, to absorb the infinities in the
perturbation expansion into three infinite constants:

• m0, the bare mass,

• λ0, the bare coupling constant, and

• Z, the wavefunction renormalization constant.

We will see how these quantities are defined in the following.

5.1 Order λ

Let us first work to order λ. The amputated two-point Green’s function is given
by Eq. (3.122),

Γ(2)(p) = −(p2 +m2) + Σ(1), (5.1)

where the mass operator is given by Eq. (4.22), or

Σ(1) = 12λ̂m2

(

2

ǫ
+ ψ(2) − ln m̂2

)

, (5.2)

where we have introduced the abbreviations

λ̂ =
λ

(4π)2
, m̂2 =

m2

4πµ2
. (5.3)

Recall, from Eq. (3.121), that the full propagator is

G(2)(p) = −
1

Γ(2)(p)
. (5.4)

63 Version of November 5, 2009



64 Version of November 5, 2009 CHAPTER 5. RENORMALIZATION

The only other diagram to this order, corresponding to the first graph in
Fig. 3.1, is finite:

Γ(4) = −4!λ. (5.5)

How can we absorb the infinity, as ǫ→ 0, in Σ? We note that it amounts to
an infinite rescaling of m. Let us therefore write m0 in place of m, and assume
that m0 can be written as a power series in the coupling λ:

m2
0 = m2

R + λa+ λ2b+ . . . , (5.6)

where the first term in the series is called the renormalized mass-squared. It is
considered to be the observed physical mass of the particle, and therefore must
be defined by the location of the pole of G(2): to order λ

Γ(2)(p) = −p2 −m2
R, (5.7)

which says from Eq. (5.1) that

λa = 12λ̂m2
R

(

2

ǫ
+ ψ(2) − ln m̂2

R

)

. (5.8)

To this order, then, this is equivalent to using m2
R in the Lagrangian, but adding

an extra counterterm to L to cancel Σ:

L =
1

2
(∂φ)2 +

1

2
m2

0φ
2 + λφ4

=
1

2
(∂φ)2 +

1

2
m2

Rφ
2 + λφ4 + Lct, (5.9)

where

Lct =
1

2
δm2φ2, (5.10)

with

δm2 = 12λ̂m2
R

(

2

ǫ
+ ψ(2) − ln m̂2

R

)

. (5.11)

The extra contribution to the mass operator from the counterterm is shown in
Fig. 5.1. Evidently,

Σ(1)

∣

∣

∣

∣

m→mR

+ Σct = 0, (5.12)

which is the content of Eq. (5.7).

5.2 Order λ
2

What happens in 2nd order? Now both two-and four-point functions are diver-
gent.
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Σ(1)

∣

∣

∣

∣

m→mR

= •��
��

= 12λ̂m2
R

(

2
ǫ + ψ(2) − ln m̂2

R

)

Σct = × = −12λ̂m2
R

(

2
ǫ + ψ(2) − ln m̂2

R

)

Figure 5.1: Diagram of the one-loop and the order λ counterterm contribution
to the mass operator.
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Figure 5.2: Feynman diagrams contibuting to the four-point function through
order λ2.
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5.2.1 Four-point Function

The Feynman diagrams for the latter are given in Fig. 5.2. From Eq. (4.27), we
have

Γ(4)(p1, p2, p3, p4) = −4!λµǫ

{

1 −
3

2
4!λ̂

[

2

ǫ
+ ψ(1) + 2 − ln m̂2

]

+
4!

2
λ̂A(s, t, u)

}

, (5.13)

where

A(s, t, u) =
∑

z=s,t,u

(

1 +
4m2

z

)1/2

ln

√

1 + 4m2

z + 1
√

1 + 4m2

z − 1
, (5.14)

in terms of the Mandelstam variables, which are defined by

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2. (5.15)

(Remember, all momenta are defined as ingoing.) Note that these variables
satisfy

s+ t+ u = 3p2
1 + p2

2 + p2
3 + p2

4 + 2p1 · p2 + 2p1 · p3 + 2p1 · (−p1 − p2 − p3)

= p2
1 + p2

2 + p2
3 + p2

4 = −

4
∑

i=1

m2
i = −4m2, (5.16)

on the “mass-shell,” where p2
i = −m2

i . (We are now applying the result in the
Minkowski region.)

We now can remove the divergence in Γ(4) by letting

λ→ λ0 = λR +Aλ2
R +Bλ3

R + . . . . (5.17)

Here λ0 is called the bare coupling constant. The renormalized coupling constant
λR may be taken to be defined by the four-point function when all the external
particles are on their mass shell and carry zero spatial momentum:

Γ(4)(p1, p2, p3, p4)

∣

∣

∣

∣

p2

i
=−m2,pi=0

= −4!λRµ
ǫ. (5.18)

The Minkowski point
p2

i = −m2, pi = 0, (5.19)

for example, corresponds to

p1 = p2 = −p3 = −p4 = (m,0), (5.20)

for which t = u = 0, s = −4m2 (the other possibilities are just a permutation
of s, t, and u), and so we have from Eq. (5.14) the value

A(−4m2, 0, 0) = 4. (5.21)
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Figure 5.3: Counterterm for the four-point function.

Thus the condition (5.18) implies for the first term in Eq. (5.17)

Aλ2
R = 4!

3

2
λRλ̂R

[

2

ǫ
+ ψ(1) +

2

3
− ln m̂2

R

]

. (5.22)

In effect, we introduce another counterterm in L:

λ0µ
ǫφ4 = λRµ

ǫφ4 + L′

ct, (5.23)

where
L′

ct = δλµǫφ4, (5.24)

with

δλ =
9

4

λ2
R

π2

[

2

ǫ
+ ψ(1) +

2

3
− ln m̂2

R

]

φ4. (5.25)

The counterterm may be represented by an additional four-point graph, shown
in Fig. 5.3.

Although the above choice of the renormalized coupling constant is rather
physical, it is not unique. For example, we could also define it as the value of
the four-point function at all momenta equal to zero:

Γ(4)

∣

∣

∣

∣

pi=0

= −4!λRµ
ǫ, (5.26)

so since then A(0, 0, 0) = 6,

δλ =
9

4

λ2
R

π2

[

2

ǫ
+ ψ(1) − ln m̂2

R

]

φ4. (5.27)

The finite part of the counterterm has been changed by this alternative pre-
scription. In general let us write

δλ =
9

2π2
λ2

R

1

ǫ

(

1 +
ǫ

2
β
)

, (5.28)

where β is a function of ǫ and m̂2; β = ψ(1) − ln m̂2
R in the scheme given by

Eq. (5.26).
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Figure 5.4: Feynman diagrams, including counterterms, contributing to the
mass operator through two-loop order.

5.2.2 Two-point Function

We now turn to the two-point function in order λ2. The graphs through order
λ2 including the counter terms are shown in Fig. 5.4. According to Eqs. (3.126),
(4.22), (4.23), and (4.56), as well as the expressions for the counterterms (we
have written λ for λR),

Γ(2)(p) = −(p2 +m2) + 12λ̂m2

(

2

ǫ
+ ψ(2) − ln m̂2

)

− δm2

+ 144λ̂2m2

{

−
4

ǫ2
−

2

ǫ

[

1 + 2ψ(1) − 2 ln m̂2
]

+ 2 ln2 m̂2

+ 2 [1 + 2ψ(1)] ln m̂2 −
1

2
[1 + 2ψ(1)]

2
−

1

2
[1 + 2ψ′(1)]

}

+ 576λ̂2m2

{

1

ǫ2
+

1

2ǫ

[

ψ(1) − ln m̂2 + α
]

+ O(1)

}

+ 432λ̂2m2

{

4

ǫ2
+

2

ǫ

[

ψ(1) + 1 − ln m̂2 + β
]

+ O(1)

}

− 96λ̂2

{

6m2

ǫ2

[

1 + ǫ

(

3

2
+ ψ(1) − ln m̂2

)]

+
p2

2ǫ
+ O(1)

}

= −p2 −m2 − δm2 + 12λ̂m2

(

2

ǫ
+ ψ(2) − ln m̂2

)
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+ (4!)2λ̂2m2

{

2

ǫ2
+

1

2ǫ
(α+ 3β − 1) −

p2

12ǫm2
+ O(1)

}

. (5.29)

Here we have evaluated the two one-loop graphs with counterterm insertions
as follows. The fifth graph in Fig. 5.4 is

Σ5 = −
λ4!

2
(−δm2)µ4−d

∫

ddl

(2π)d

1

(l2 +m2)2

= −
λ4!

2
(−δm2)µ4−d (m2)d/2−2

(4π)d/2
Γ(2 − d/2)

=
4!λ

2
δm2 1

(4π)2

(

m2

4πµ2

)−ǫ/2
2

ǫ

[

1 +
ǫ

2
ψ(1)

]

=
4!λ̂

ǫ
12λ̂m2 2

ǫ

(

1 +
ǫ

2
α+ . . .

) [

1 +
ǫ

2

(

ψ(1) − ln m̂2
)

+ . . .
]

= 288λ̂2m2 2

ǫ2

{

1 +
ǫ

2

[

ψ(1) − ln m̂2 + α
]

+ . . .
}

, (5.30)

where in the scheme given in Sec. 5.1 [see Eq. (5.11)],

α = ψ(2) − ln m̂2, (5.31)

but in other renormalization schemes, α may have a different value. The sixth
graph in Fig. 5.4 is from Eq. (4.22) or (5.2)

Σ6 = 12δλ̂m2

[

2

ǫ
+ ψ(2) − ln m̂2

]

= 12m2λ̂2 3

2
4!

(

2

ǫ
+ β

) [

2

ǫ
+ ψ(2) − ln m̂2

]

= 432λ̂2m2

{

4

ǫ2
+

2

ǫ

[

ψ(1) − ln m̂2 + β + 1
]

+ . . .

}

. (5.32)

In the second line we used the result from Eq. (5.28). We have only displayed
the divergent parts of these graphs.

Now we require that this two-point function (5.29) be finite. In part this can
be achieved by a cancellation between the mass counterterm and the divergent
parts:

δ1m
2 = m2

{

2
(4!)2λ̂2

ǫ2
+

4!λ̂

ǫ

[

1 + 4!λ̂
1

2
(α+ 3β − 1)

]

}

, (5.33)

and then regarding m2 = m2
R as finite. However, there is also a divergence

proportional to p2. Write the remainder of Γ(2) as

−p2

[

1 +
(4!)2λ̂2

12ǫ

]

−m2
R − δ2m

2 = −

[

1 +
(4!)2λ̂2

12ǫ

]

(p2 +m2
R)

− δ2m
2 +

(4!)2λ̂2

12ǫ
m2

R

= −Z−1(p2 +m2
R), (5.34)
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where, up to finite terms,

Z = 1 −
(4!)2λ̂2

12ǫ
, (5.35a)

δ2m
2 =

(4!)2λ̂2

12ǫ
m2

R. (5.35b)

Here we have written the mass counterterm as

δm2 = δ1m
2 + δ2m

2, (5.36)

and the bare mass as

m2
0 = m2

R + δm2 = (m2
R + δ1m

2)Z−1 (5.37)

5.3 Renormalized Green’s Functions

The Lagrangian, then, may be expressed either in terms of bare quantities,

L =
1

2
∂µφ0∂

µφ0 +
1

2
m2

0φ
2
0 + λ0φ

4
0, (5.38)

or in terms of renormalized ones,

L =
1

2
∂µφ∂

µφ+
1

2
m2

Rφ
2 + λRµ

ǫφ4 + Lct, (5.39)

where the counterterm Lagrangian is

Lct =
1

2
A∂µφ∂

µφ+
1

2
δm2φ2 + δλµǫφ4, (5.40)

where δλ, δm2, and A may be expressed as power series in the renormalized cou-
pling constant λR, with divergent coefficients. Note that only structures present

in the original Lagrangian appear in Lct. This is what we mean by a renor-

malizable theory—a nonrenormalizable theory would require the introduction of
an infinite number of counterterms, with structures that do not appear in L.
[Einstein’s gravity theory, general relativity, is a prime example of a nonrenor-
malizable theory.] By comparing the two forms of L above we see

φ0 = (1 +A)1/2φ ≡ Z1/2φ, (5.41a)

m2
0Z = m2

R + δm2, m2
0 = (m2

R + δm2)Z−1, (5.41b)

λ0Z
2 = (λR + δλ)µǫ, λ0 = (λR + δλ)Z−2µǫ. (5.41c)

[Since Z = 1 + O(λ2), the Z correction to the coupling appear only in order
λ3.] Note that we are now absorbing µǫ into the definition of λ0, so that the
bare theory contains no reference to the arbitrary mass scale µ, which is an
artifact of renormalization. In the above φ0 is called the bare field, and Z the
wavefunction renormalization constant.
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All the infinities in the theory can be absorbed into the three infinite con-
stants, λ0, m0, and Z, and finite, renormalized Green’s functions are given by

Γ
(n)
R (p1, . . . , pn;λR,mR, µ, ǫ) = Zn/2Γ

(n)
0 (p1, . . . , pn;λ0,m0, ǫ). (5.42)

For example, for the two-point function,

p2 +m2
R = Z[p2 +m2

0 − Σ(p, λ0,m0, ǫ)]. (5.43)

The corresponding formula for the full Green’s functions is

G
(n)
R (p1, . . . , pn;λR,mR, µ, ǫ) = Z−n/2G

(n)
0 (p1, . . . , pn;λ0,m0, ǫ). (5.44)

This is proved as follows. The bare generating function is given by

Z0[K] =

∫

[dφ0]e
−

∫

(dx)[ 1

2
(∂φ0)

2+ 1

2
m2

0
φ2

0
+λ0φ4

0
−Kφ0]. (5.45)

The renormalized generating function is given by

Z[K] =

∫

[dφ]e−
∫

(dx)[Z

2
(∂φ)2+ Z

2
m2

0
φ2+Z2λ0φ4

−Kφ] = Z0[KZ
−1/2]. (5.46)

where we have rescaled the functional integral:

φ0 = Z1/2φ→ φ. (5.47)

(Remember that the functional integral is undefined up to an overall constant.)
Then the renormalized Green’s functions, which are finite when expressed in
terms of λR and mR, are defined by

G(n)(p1, . . . , pn) =
δn

δK(p1) · · · δK(pn)
lnZ[K]

∣

∣

∣

∣

K=0

= Z−n/2 δn

δK(p1) · · · δK(pn)
lnZ0[K]

∣

∣

∣

∣

K=0

= Z−n/2G
(n)
0 (p1, . . . , pn), (5.48)

where the unrenormalized Green’s function is taken to depend on λ0, m0, and
ǫ. For the corresponding proof of the statement (5.42) about the Γ(n)’s, see the
homework.

Let us summarize our results for the relations between bare and renormalized
parameters, and introduce a bit more general notation. Here we will drop the
R subscript on renormalized quantities, and let g = 4!λ. Through order g2 the
wavefunction renormalization constant has the form [see Eq. (5.35a)]

Z = 1 −
ĝ2

12ǫ
− ĝ2H2(ǫ, m̂

2), (5.49)
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Figure 5.5: Typical graph contributing to the four-point function.

where ĝ = g/(4π)2 and m̂2 = m2/(4πµ2). Here H2 is a function which is finite
as ǫ→ 0. The bare field is related to the renormalized field by

φ0 = Z1/2φ. (5.50)

The mass counterterm is given by [see Eq. (5.33)]

δm2 = m2

{

ĝ

[

1

ǫ
+

1

2
F1(ǫ, m̂

2)

]

+
2ĝ2

ǫ2

+
ĝ2

2ǫ
[F1(ǫ, m̂

2) + 3G1(ǫ, m̂
2) − 1] +

1

2
ĝ2F2(ǫ, m̂

2)

}

. (5.51)

Again the functions F1, F2, G1, and G2 are finite as ǫ → 0. (In the above we
called F1, α, and G1, β.) The bare mass is related to the renormalized mass by

m2
0 = (m2 + δm2)Z−1. (5.52)

(Here δm2 is what we called δ1m
2 above.) The coupling counterterm is given

by [see Eq. (5.28)]

δĝ = ĝ2 3

ǫ

[

1 +
ǫ

2
G1(ǫ, m̂

2)
]

, (5.53)

and the bare coupling is given in terms of the renormalized coupling by

ĝ0 = µǫ(ĝ + δĝ)Z−2. (5.54)

5.4 Divergences of Feynman Diagrams

Have we really got them all? Consider a general graph, with I internal mo-
mentum, L loops, and V vertices, such as that shown in Fig. 5.5. A moment’s
reflection show that these numbers are related by the following formula:

L = I − V + 1. (5.55)

For the example in Fig. 5.5, I = 10, V = 6, and indeed L = 5. Here the V
arises because there is one momentum restriction per vertex, and the 1 because
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Figure 5.6: Superficially convergent graph contributing to Γ(6) which contains
the divergent subgraph in Fig. 4.1.

of overall momentum conservation. Now the superficial degree of divergence of
a Feynman diagram is given by

D = dL− 2I, (5.56)

where d is the number of dimensions of spacetime, because for each loop inte-
gration one integrates the volume element ddl, and for each internal line there
is a propagator 1/[(l − p)2 + m2]. For the example given in Fig. 5.5, D = 0,
signifying a logarithmic divergence. (Internal subgraphs are more divergent.)
These first two relations hold for any scalar theory. Now for the λφ4 theory,
each vertex has four lines coming from it, so because each internal line connects
to two vertices,

4V = E + 2I, (5.57)

both sides of which are 24 in the above example. Combining these relations, we
find for the superficial degree of divergence

D = d(I − V + 1) − 2I = d− dV + (d− 2)(2V − E/2)

= d+ (d− 4)V −
d− 2

2
E = 4 − E, (5.58)

where the last form holds in four dimensions.
If D ≥ 0 the diagram is divergent:

• Γ(2) hasD = 2, so the two-point function possesses a quadratic divergence.

• Γ(4) has D = 0 so the four-point function possesses a logarithmic diver-
gence.

If E > 4, or D < 0, the diagram is superficially convergent, but it may contain
divergent subintegrations, as shown in Fig. 5.6. Weinberg’s theorem states that
a Feynman diagram is convergent if its superficial degree of divergence, and
that of all its subgraphs, is negative. The only primitive divergences are in Γ(2)

and Γ(4)—these divergences can be absorbed by renormalization of parameters
in L—this is the essence of a renormalizable theory. (The difficult point is
establishing renormalizability is in proving that overlapping divergence do not
generate terms like 1

ǫ ln p2.)


