
Chapter 4

Divergences

It is apparent that the perturbative expansion given in the previous chapter is
divergent, term by term. (An entirely separate issue is that of the convergence
of the perturbation series.) For example, consider the order λ one-particle irre-
ducible graph in Fig. 3.9, which corresponds to the mass operator (3.111), or in
four-dimensional spherical coordinates, (dl) = dΩ l3 dl, and Ω = 2π2 being the
area of a unit four-sphere,
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where we have introduced an ultraviolet momentum cutoff Λ ≫ m. This di-
agram is quadratically divergent. Another example is the contribution to the
four-point function given in Fig. 3.6, or in momentum space given in Fig. 4.1.
The corresponding momentum-space integral is
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Figure 4.1: A second-order Feynman diagram for the one-particle irreducible
four-point function G(4)(p1, p2, p3, p4) corresponding to Eq. (4.2). All permuta-
tions of the momentum labels have to be considered. The arrows indicate the
sense of momentum flow.
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This is clearly logarithmically divergent. However, let us make it more explicit
by using a trick due to Schwinger. Write

1

l2 +m2
=

∫ ∞

0

ds e−s(l2+m2), (4.3)

where the parameter s is called the Euclidean proper time. Then we can write
the product of the two denominators in Eq. (4.2) as

1

l2 +m2

1

(l − p1 − p2)2 +m2
=

∫ ∞

0

ds ds′ e−s′(l2+m2)−s[(l−p1−p2)
2+m2]. (4.4)

Rewrite this by introducing a parameter u by a change of variables,

s→ su, s′ → s(1 − u), ds ds′ → s ds du, (4.5)

where u ranges from 0 to 1. (The integration variable u is usually called a
Feynman parameter, but Feynman acknowledged that he borrowed the idea
from Schwinger, just as Schwinger adopted Feynman’s propagator.) Then the
exponent in Eq. (4.4) is

s′(l2 +m2) + s[(l − p1 − p2)
2 +m2]

= s{l2[u+ (1 − u)]− 2u l · (p1 + p2) + u(p1 + p2)
2 +m2[u+ (1− u)]}
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2 +m2}, (4.6)

where in the last line we have completed the square. Therefore, the diagram 4.1
represented by Eq. (4.2) becomes

288λ2
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If it were legitimate to shift the integration variable

[l − u(p1 + p2)]
2 → l2, (4.8)

we would get
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(which proves Ω = 2π2), and the divergence now appears as a singularity at
small s:
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2+m2]. (4.10)

These divergences are a real artifact of field theory—we cannot eliminate
them, but only sweep them away with a process called renormalization. To
deal with them, we must regulate the theory, which we can do with cutoffs in
large momentum (Λ) or small s (s0). There are a number of formal techniques
(Pauli-Villars, zeta-function regularization), but the most common nowadays is
dimensional regularization, invented by ’t Hooft and Veltman.

4.1 Dimensional Regularization

We use the proper-time representation encountered above, so that the generic
momentum (loop) integral we encounter is

∫
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(2π)4
e−s[(l−q)2+M2]. (4.11)

What we do is let the number of dimensions go from 4 to d, and then
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1
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. (4.12)

Then the loop integral is, according to Eq. (4.3), provided d is chosen so that
the integral converges, d < 2,
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and more generally, if we use Eq. (4.12) again,
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The essence of dimensional regularization is that these results, derived under
the assumption that d < 2 so that the integral converge, are taken to be true
for all d. This is a type of analytic continuation. We see that a quadratically
divergent diagram (n = 0) has simple poles at d = 2, 4, . . ., while a logarithmi-
cally divergent diagram (n = 1) has poles at d = 4, 6, . . .. Loop integrals with
n > 1 have no divergences in four dimensions.

One further thing remains to be done. We need to ensure that λ remains
dimensionless for all d. Because the dimension of φ is

[φ] = Massd/2−1, (4.15)

which follows from the dimensional character of the free action, we must intro-
duce an arbitrary mass µ into the interaction term in order to make it dimen-
sionless:

Wint = λµx

∫

ddxφ4, ⇒ x = 4− d. (4.16)

That is, we replace

λ→ λ(µ2)2−d/2. (4.17)

We are now going to evaluate all the O(λ), O(λ2) graphs using dimensional
regularization. We start with the 2-point function. The mass operator (3.111)
becomes

Σ(1) = −12λ(µ2)2−d/2

∫

ddl

(2π)d

1

l2 +m2
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(
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)2−d/2

Γ(1− d/2), (4.18)

which uses Eq. (4.13). Now expand Γ(1 − d/2) about d = 4 by introducing
d = 4− ǫ, |ǫ| ≪ 1:

Γ(1− d/2) = Γ(−1 + ǫ/2) =
1

−1 + ǫ/2

1

ǫ/2
Γ(1 + ǫ/2) ≈ −2

ǫ
− 1− Γ′(1), (4.19)

since Γ(1 + x) = xΓ(x).

Now we introduce the diagamma function,

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
, (4.20)

with the property

ψ(1 + x) =
d

dx
ln Γ(1 + x) =

d

dx
[ln Γ(x) + lnx] = ψ(x) +

1

x
. (4.21)
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Then we can rewrite Eq. (4.18) as an infinite part plus a remainder:
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+ . . .

) (

−2

ǫ
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. (4.22)

The finite part is totally arbitrary, since it depends on the arbitrary artificial
parameter µ.

Next we turn to the evaluation of the last graph in Fig. 3.10, which is ac-
cording to Eq. (3.110)
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(4.23)

where, in terms of Euler’s constant,

ψ(1) = −γ = −0.5772156649, and ψ′(1) =
π2

6
. (4.24)

Here both the coefficient of 1/ǫ and the constant are ambiguous.

Next, let us consider the contribution to the four-point function in Fig. 4.1
given by Eq. (4.7), or in d dimensions

Γ(4) =
288λ2µ4−d

(4π)2
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0
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2 +m2
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=
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∫ 1

0
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{

2

ǫ
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[
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.

(4.25)
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It is easy to carry out the integration, by integrating by parts, and then partial
fractioning. We leave the details to the homework. The result is

∫ 1

0

du ln

[

u(1− u) q
2

m2
+ 1

]

= −2−
√

1 +
4m2

q2
ln

√

1 + 4m2

q2 − 1
√

1 + 4m2

q2 + 1
. (4.26)

Thus the graph in question has the value (q = p1 + p2)

Γ(4)(p1, p2) =
288λ2

(4π)2
µǫ

[

2

ǫ
+ ψ(1) + 2 + ln

4πµ2

m2

−
√

1 +
4m2

q2
ln

√

1 + 4m2

q2 + 1
√

1 + 4m2

q2 − 1

]

, (4.27)

There are actually three similar diagrams contributing to Γ(4)(p1, p2, p3, p4),
depending on the attachment of the external momenta. In terms of the quantity
computed above, we have

Γ(4)(p1, p2, p3, p4) = Γ(4)(p1, p2) + Γ(4)(p1, p3) + Γ(4)(p1, p4). (4.28)

Finally, we turn to the middle graph in Fig. 3.10,

Σ(2a)(p) = 96λ2(µ2)4−d

∫

ddl

(2π)d

ddl′

(2π)d

1

l2 +m2

1

l′2 +m2

1

(p− l − l′)2 +m2
,

(4.29)
according to second line of Eq. (3.110). This diagram has what are called
overlapping divergences, and must be handled with care. The standard trick is
to insert the factor

1 =
1

2d

(

dlµ

dlµ
+
dl′µ

dl′µ

)

, (4.30)

and integrate by parts, dropping the surface term (see below). This gives

Σ(2a)(p) = −48λ2

d
(µ2)4−d

∫

ddl

(2π)d

ddl′

(2π)d
2

[

− 2lµlµ
(l2 +m2)2

× 1

(l′2 +m2)[(p− l− l′)2 +m2]

+
1

(l2 +m2)(l′2 +m2)

2lµ(p− l − l′)µ

[(p− l − l′)2 +m2]2

]

, (4.31)

where a factor of two arises from two terms which are identical after the re-
placement of l by l′. In the first integral, make a shift of variable,

l → p− l − l′, p− l − l′ → l, (4.32)

which amounts to

l2 → (p− l − l′)2 = p · (p− l − l′)− l · (p− l− l′)− l′ · (p− l − l′). (4.33)
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This allows us to write the result with a single denominator,

Σ(2a)(p) =
48λ2

d
(µ2)4−d4

∫

ddl

(2π)d

ddl′

(2π)d

× [(p− l − l′)2 + 1
2 (p− l − l′)2 + 3

2m
2]− 3

2m
2 − 1

2p · (p− l − l′)
(l2 +m2)(l′2 +m2)[(p− l − l′)2 +m2]2

=
3

d
Σ(2a)(p) +

96λ2

d
(µ2)4−d

[

−3m2K(p)− pµKµ(p)
]

, (4.34)

where

K(p) =

∫

ddl

(2π)d

ddl′

(2π)d

1

(l2 +m2)2
1

l′2 +m2

1

(p− l − l′)2 +m2
, (4.35a)

Kµ(p) =

∫

ddl

(2π)d

ddl′

(2π)d

1

l2 +m2

1

l′2 +m2

(p− l − l′)µ

[(p− l − l′)2 +m2]2
, (4.35b)

so that Eq. (4.34) can be rewritten as

Σ(2a)(p) =
96λ2

3− d (µ2)4−d
[

3m2K(p) + pµKµ(p)
]

. (4.36)

Integration by parts has resulted in superficially more convergent integrals.

Let us make some remarks about this formula.

• We obtained it by working with d in a region (d < 3/2) where the integrals
exist. Thus the surface term in the integration by parts is zero there.

• When p = 0 the formula may be obtained more simply by differentia-
tion with respect to m2: On the one hand, since the mass operator has
dimensions of mass-squared, we must have

Σ(2a)(0) = (m2)d−3(µ2)4−d × number , (4.37)

where

Σ(2a)(0) = 96λ2(µ2)4−d

∫

ddl1 d
dl2 d

dl3
(2π)3d

(2π)dδ(l1 + l2 + l3)

(l1 +m2)(l2 +m2)(l3 +m2)
,

(4.38)
and so from Eq. (4.35a)

∂2

∂m2
Σ(2a)(0) = (d− 3)

Σ(2a)(0)

m2
= −96λ2(µ2)4−d3K(0), (4.39)

or

Σ(2a)(0) = 96λ2(µ2)4−d 3m2

3− dK(0), (4.40)

which is the value given by Eq. (4.36).
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Let us now proceed to work out K(p). We first recall that

1

l′2 +m2

1

(p− l − l′)2 +m2
=

∫ ∞

0

ds s

∫ 1

0

du e−su[(p−l−l′)2+m2]e−s(1−u)(l′2+m2)

=

∫ ∞

0

ds s

∫ 1

0

du e−s[l′2+m2−2u l′·(p−l)+u(p−l)2]

=

∫ ∞

0

ds s

∫ 1

0

du e−s{[l′−u(p−l)]2+u(1−u)(p−l)2+m2},

(4.41)

so that according to Eq. (4.12),
∫

ddl′

(2π)d

1

l′2 +m2

1

(p− l − l′)2 +m2
=

∫ 1

0

du
[m2 + u(1− u)(p− l)2]d/2−2

(4π)d/2

×Γ(2− d/2). (4.42)

We have one remaining loop integration to perform. Eq. (4.35a) becomes

K(p) =
Γ(2− d/2)

(4π)d/2

∫

ddl

(2π)d

1

(l2 +m2)2

∫ 1

0

du [u(1− u)]d/2−2

×
[

(p− l)2 +
m2

u(1− u)

]d/2−2

=
Γ(2− d/2)

(4π)d/2

∫ 1

0

du [u(1− u)]d/2−2

∫

ddl

(2π)d

∫ ∞

0

ds′s′e−s′(l2+m2)

× 1

Γ(2− d/2)

∫ ∞

0

ds′′s′′1−d/2e−s′′{(p−l)2+m2/[u(1−u)]}. (4.43)

Now we let
s′ = s(1− v), s′′ = sv, ds′ ds′′ = s ds dv, (4.44)

and so

K(p) =
1

(4π)d/2

∫ ∞

0

ds s s2−d/2

∫ 1

0

du [u(1− u)]d/2−2

∫ 1

0

dv v1−d/2(1 − v)

×
∫

ddl

(2π)d
e−s{(1−v)(l2+m2)+v[(p−l)2+m2/u(1−u)]}. (4.45)

The exponent here can be rewritten as

(l − pv)2 + v(1− v)p2 +m2

[

1− v +
v

u(1− u)

]

, (4.46)

so using Eq. (4.12) again, we have

K(p) =
Γ(4− d)
(4π)d

∫ 1

0

du [u(1− u)]d/2−2

∫ 1

0

dv (1− v)v1−d/2

×
[

v(1 − v)p2 +m2

(

1− v +
v

u(1− u)

)]d−4

. (4.47)
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We now evaluate this for d near 4. Again we write d = 4 − ǫ, and (the result
converges for ǫ > 0)

K(p) =
Γ(ǫ)

(4π)4−ǫ

∫ 1

0

du [u(1− u)]−ǫ/2

∫ 1

0

dv v−1+ǫ/2(1− v)

×
[

v(1− v)p2 +m2

(

1− v +
v

u(1− u)

)]−ǫ

≈ Γ(ǫ)

(4π)4−ǫ
m−2ǫ 2

ǫ

(

1 +
ǫ

2

)

+O(1). (4.48)

Here the 2/ǫ occurs because the v integration is singular as at v = 0. The details
of the derivation of this result are relegated to the homework.

Next, we calculate Kµ(p), Eq. (4.35b). First we combine the two denomina-
tors containing l′:

1

l′2 +m2

1

[(p− l − l′)2 +m2]2
=

∫ ∞

0

ds′ ds′′ s′′e−s′(l′2+m2)e−s′′[(p−l−l′)2+m2]

=

∫ ∞

0

ds s2
∫ 1

0

du u e−s{(1−u)(l′2+m2)+u[(p−l−l′)2+m2]}

=

∫ ∞

0

ds s2
∫ 1

0

du u e−s{[l′−u(p−l)]2+u(1−u)(p−l)2+m2} (4.49)

and the corresponding loop integral

∫

ddl′

(2π)d

1

l′2 +m2

(p− l − l′)µ

[(p− l− l′)2 +m2]2
(4.50)

is done by first changing variables,

l′ − u(p− l)→ l′, p− l − l′ → (p− l)(1− u)− l′, (4.51)

and then integrating symmetrically on the new l′ variable, so that the term
linear in l′ integrates to zero. According to Eq. (4.12) we are left then with

(p− l)µ

∫ ∞

0

ds s2
∫ 1

0

du u(1− u) 1

(4π)d/2sd/2
e−s[m2+u(1−u)(p−l)2]

= (p− l)µ
Γ(3 − d/2)

(4π)d/2

∫ 1

0

du u(1− u)[m2 + u(1− u)(p− l)2]d/2−3. (4.52)

Finally we must integrate over l:

Kµ(p) =

∫

ddl

(2π)d

1

l2 +m2
(p− l)µ

Γ(3− d/2)

(4π)d/2

∫ 1

0

du u(1− u)

×[m2 + u(1− u)(p− l)2]d/2−3

=
1

(4π)d/2

∫ 1

0

du [u(1− u)]1+d/2−3

∫

ddl

(2π)d
(p− l)µ

∫ ∞

0

ds′e−s′(l2+m2)
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×
∫ ∞

0

ds′′(s′′)2−d/2e−s′′[(p−l)2+m2/u(1−u)]

=
1

(4π)d/2

∫ ∞

0

ds s3−d/2

∫ 1

0

du [u(1− u)]d/2−2

∫ 1

0

dv v2−d/2

×
∫

ddl

(2π)d
(p− l)µe

−s{(l−vp)2+v(1−v)p2+m2[1−v+v/u(1−u)]}. (4.53)

Again, we change variables,

l − vp→ l, p− l → (1− v)p− l, (4.54)

so symmetric integration in the new l variable gives

Kµ(p) =
pµ

(4π)d

∫ ∞

0

ds s3−d

∫ 1

0

du [u(1− u)]d/2−2

×
∫ 1

0

dv v2−d/2(1− v)e−s{p2v(1−v)+m2[1−v+v/u(1−u)]}

=
pµ

(4π)d

∫ 1

0

du [u(1− u)]d/2−2

∫ 1

0

dv (1− v)v2−d/2Γ(4− d)

×
[

p2v(1− v) +m2

(

1− v +
v

u(1− u)

)]d−4

=
pµΓ(ǫ)

(4π)4−ǫ

∫ 1

0

du [u(1− u)]−ǫ/2

∫ 1

0

dv (1− v)vǫ/2

×
[

p2v(1− v) +m2

(

1− v +
v

u(1− u)

)]−ǫ

≈ pµΓ(ǫ)

(4π)4−ǫ
m−2ǫ

∫ 1

0

du

∫ 1

0

dv (1 − v) =
pµΓ(ǫ)

(4π)4−ǫ

m−2ǫ

2
+O(1),(4.55)

the details in the last line again being supplied in the homework.
Putting together the results for K(p), Eq. (4.48), and Kµ(p), Eq. (4.55), we

find that Eq. (4.36) becomes (ǫ→ 0)

Σ(2a)(p) ≈ 1

ǫ− 1
96λ2(µ2)ǫ Γ(ǫ)

(4π)4

(

4π

m2

)ǫ [

3m2 2

ǫ

(

1 +
ǫ

2

)

+
p2

2

]

≈ −3λ2

8π4

{

6m2

ǫ2

[

1 + ǫ

(

3

2
+ ψ(1) + ln

4πµ2

m2

)]

+
p2

2ǫ
+O(1)

}

.

(4.56)

We now have to deal with the meaning of these explicitly divergent expressions.


