Chapter 1

Classical Action Principles

1.1 Classical Lagrange-Hamilton Principle

This is sometimes referred to as the principle of least action. Let the classical
system under consideration be described by N generalized coordinates

q={gi}i=1,..N, (1.1a)

and the corresponding velocities

d
q {q 74 }_N (1.1b)

The dynamics of the system is specified by giving the Lagrangian, L = L(q, ¢, t).
The action W is the time integral of the Lagrangian from some initial time ¢
to some final time %1,

Wi = / dt L{q(t), d(t), ). (12)

The action principle states that under infinitesimal variations, the change in the
action depends only on the endpoints, that is,

5W12 = G1 — GQ, (13)

where G, is a function depending only on dynamical variables at time ¢,. In
other words, the action is stationary with respect to variations between 2 and
1. This stationary property picks out the physical trajectory connecting go, ¢o
and q1, q1.

The Lagrangian for a nonrelativistic particle of mass m moving in a potential
V(r) is

L=T-V=-mi? - V(), (1.4)
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where the independent variables are r and ¢. The possible variations are a
change in the path, ér, and a change in the time of the endpoints dto, dt;.
However, for the latter it is more convenient to define a change in the time
parameter t — ¢ + 0t(t) where 6t(t1) = dt1, dt(t2) = dtz. Then

dt
d dét\ d

Because of this change in ¢, the limits of integration in Wi, are not changed.
We are now ready to compute the infinitesimal variation in Wis:

dt — d(t+6t) =dt (1 + d—&> , (1.5a)

! dr d
W1y = / dt{m— -—o0r —or-VV(r
L dt dt (x)

+d_5t1 @ 2_V(r) —_ @ Qd_(st
ar 2"\t "\a ) at

—/1dt Do or— 5t (Lmi2 4 v
= . dt mr r 2mr

+ 0t - [-m¥ — VV] +6t% Bmf2 +V] } (1.6)

Because dr and Jt are independent variations, we conclude that

mi = —-VV, (1.7a)
which is Newton’s law, and
dE 1
pr 0, where FE = imi‘2 + V(r) is the energy, (1.7b)

which is the statement of energy conservation. What is left of the variation
comes only from the endpoints, so we infer the form of the “generators,”

G =p-ér— Edt, p=mi=momentum. (1.8)

Let us repeat this analysis for a general Lagrangian, L(q;, ¢;,t). In the fol-
lowing we will adopt a summation convention of summing over repeated indices

1. We find

! oL d oL dot 8L . dst OL
oWia = /2 dt{a_qi%&]i + 8_(11'5% + EL — 8_@-%‘% + Eét}

! d [OL oL .
= [l [gonor (- 5

d oL oL d L . oL
+0a (‘%aqi - 3%) ~ (L - 8—%%) +6t§}' (-9)
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From the interior terms we deduce

doL OL
dt 8q1 8qi o

(1.10)

which is the Euler-Lagrange equation, and the equation of energy conservation
(if there is no explicit time dependence)

d oOH
—H=" 1.11
dt ot’ ( )

where the energy or Hamiltonian is
H = pi(ji - L, (112)

in terms of the generalized momentum

oL
i = - 1.13
Pi = 5 (1.13)
Finally, the generator has the form
G = pi5qi — Hét. (114)

Let us now return to the simple one-particle system and write the Hamilto-
nian:
: 1p?
H(p,r):p-r—L:i——l-V(r):T—l—V. (1.15)
m
We are now to regard r, p, and ¢ as independent variables. Then the variation
of the action is

1
dr
6W12—6/2 dlf(p-ﬁ—H>

! d OH dr OH  dot OH
A
Yofd dp OH
—/2 dt{a[p-ér—Hét]—i—ér-[—%—E]
dr  OH dH OH
”"'[E‘%] &(E_E)}' (1.16)

From this we infer the three Hamilton’s equations,

dr OH p

i % = here, (1.17a)
dp 0H

= e —VV here, (1.17b)
dH _ 0H (1.17¢)

dt ot
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The generators are

G=p-oér— Ht. (1.18)
The generalization to H(q;, p;) is immediate:
dqi . 0H
T o (1.19a)
dpi 0H
= — 1.19b
dt 8(]1' ’ ( )
dH OH
The generators are
G = pi&Zi — Hét. (120)

Suppose we consider a function of the dynamical variables, f(q;,p;,t). Its
time derivative is
o _0f 0fdg  0f dp.
dt n ot aqi dt 6pi dt
H H
_or, omor o of o)
ot~ Op; 0q;  Oq; Op;

We define the Poisson bracket by

{fhot=a— 55— (1.22)

so we have p of
—f=—= H f}. 1.23
Sf=SL g (1.23)
Thus, if the following two conditions hold,

1. there is no explicit time dependence of f,

of

— =0 1.24

o, (1.240)
and

2. the Poisson bracket of f and H vanishes,

{H,f}=0, (1.24b)

then f is a constant of the motion.

It is sometimes useful to adopt a viewpoint intermediate between that of
Lagrange and that of Hamilton. Let us write for the Lagrangian of our single
particle system

I
|
=
=
©
2

(1.25)



1.1. CLASSICAL LAGRANGE-HAMILTON PRINCIPLES5 Version of January 12, 2015

where 1
H(r,p,v) =p-v—gmv* +V(r). (1.26)

We are now to regard r, p, and v as independent variables. Then the variation
of the action is

! d OH
5W12 = L dt{p E(SI'—(SI" E

dr OH OH  dét oOH
' [a‘%_ “WW‘EH“”W}

! d
—/th{a[pﬁr—H(St]
_5r.[d_p+8_H +6p.[@_8_H]

dt = Or | dt Op
OH d 0H
This implies the four “equations of motion,”
dp 0H
%= o (= =VV here), (1.28a)
dr 0H
i % (=v here), (1.28b)
0= (Z—Ij (=p—mv here), (1.28c¢)
dH 0OH
= 1.28d
dt ot’ (1.28d)
and the generator
G=p-ér— Hét. (1.28¢)

1.1.1 Generators
The generators interrelate conservation laws and invariances of the system.

1. Suppose the action is invariant under a rigid displacement (translation) of
the coordinate system:

5W12 =0= P1- 61‘1 — P2 51‘2, (129)
where dr; = drs for a rigid displacement. Then

p1 = P2, (1.30)

that is, momentum is conserved. By our equations of motion, this will be
true, of course, only if V is constant. Conversely, if V' is constant, W is
invariant under a translation of the coordinate system.
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2. If W is invariant under a rigid displacement in time (time translation, for
which 5t1 = 5t2)
OWia =0= —H0t; + H25t2, (131)

which implies
H, = Ho, (1.32)

that is, energy is conserved. This is consistent with our equations of
motion, unless H has explicit time dependence, in which case

% = %—Ij (1.33)
3. Suppose W is invariant under rigid rotations,
dr = dw X r. (1.34)
Then
0=0Wiz = p1-0r; — p2-0ry
= dw-(r; X p1 —ra X pa), (1.35)

which means that L = r x p is conserved. This will be true here provided
V(r) = V([r]).

1.2 Classical Field Theory

Let us move on to classical field theory by writing down the appropriate La-

grangian for relativistic classical electrodynamics':

dr / vZ e
L = Zpk . <d_tk_Vk> —m0k02 1—c—§+?kUZA#(I‘k)
k
+ / (dr) [—%F“”(&MA,, —0,A,) + iF“”FHV} , (1.36)

where mgy is the rest mass of the kth particle, which has velocity vy, position
ri, and momentum pg. Appearing here is the four-velocity

v}, = (¢, vg), that is 02 =g, v}; = V;iq, (1.37)

where we have adopted the usual convention that Greek indices run over four
values, 4 = 0,1,2,3, while Latin indices take on only the three spatial values,
i =1,2,3. Note that

dtv* = (cdt, dr) (1.38)

1For motivation, see J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-y. Tsai,
Classical Electrodynamics [Perseus (Westview Press), New York, 1998]
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is a four-vector. The four-gradient is

190
0, = <E&,V> , (1.39)

and the four-vector potential is
Al =(¢,A), (1.40)

in terms of the usual scalar (¢) and vector (A) potentials. F*¥ is the electro-
magnetic field strength tensor, which is antisymmetric,

FH = s, (1.41)

and therefore has six distinct nonzero components which are the electric and
magnetic field strengths,

FY = F' F9=¢I%p,, (1.42)
where the antisymmetric tensor (Levi-Civita symbol) is defined by
€123 = +1, ¢k = eIkt — ki — _ Itk — ki — _hIT (1-43)

Indices are lowered with the metric tensor

—-1000
0 100
Juv = 0010 | (1.44)
0 001
so for example
Ay =guwA” = (—¢,A), (1.45)

and the summation convention over repeated indices is used.
Let us work out the four independent variations of L with respect to particle
variables: (Vj = 9/0ry)

d d

ory: 0L = —(0ry - pg) + Ory - _ Pk, e—kUZLVkAM(rk) , (1.46a)
dt dt c

(5pk : 0L = 6pk . (Clditk — V;g> 5 (1.46b)

d dH
0t: OL = = (~HGt)+dt—, (1.46d)

§vi: 6L = 6y <—pk TR e—kA(I‘k)> ; (1.46¢)

assuming no explicit time dependence, so the action principle implies

drk

Vi =

(1.47a)
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Mok Vi €k
= — + —A(rp), 1.47b
dpr _ eg
ol ?VkaA#(rk), (1.47¢)
dH
— =0 1.47d
=0, (1.47d)
where the Hamiltonian has a particle and a field part,
HZZHk-i-Hf, (1.48)
k
where
v e
Hy, = pr - Vi + mopc®y/1 — C—’; — ?kaA#(rk)
2
= % | erp(ra), (1.49)
V1—wvp/c?

where Eq. (1.47b) was used to eliminate pg, and the field part will be given
below.
We continue by working out the field variations of Eq. (1.36):

0A,: 0L = /(dr) [6A, (j* — O, F*) + 0, (A FM)], (1.50)
where the current density is
J) = D7 Fofid(e =) = (p.d), (1.51)
k
so that
[, w5 - > % A (). (1.52)

The two remaining variations are

SFM . L = / (dr)sFH {—%(@AU —0,A,) + EFW} . (1.53)

2
dot . 1
ot Wy = dt(dr)ﬁ —FY0;A, + ZFWFW . (1.54)
The action principle thus implies Maxwell’s equations,
F,. = 0,A, —0,A,, (1.55a)
o, FH = gk (1.55b)

and gives the field part of the Hamiltonian,
- 1
;= [ [F“’&Au - ZF*‘”FMU]

:/(dr) [E-V¢+B-V><A+%(E2—BQ)] (1.56)
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But using the field equations that give the construction of the field strengths in
terms of the potentials,

Ei = —F%=_9'A° 1+ 94" — —V,¢ — %, (1.57a)
cot
1
B; = Seijule = €ijpdjAx = (V x A)i, (1.57b)
the field part of the Hamiltonian becomes
o Lo 2
Hy = [ (dr) | 5B+ B?) = po| (1.58)

since V - E = p. Notice then that the total Hamiltonian, from Egs. (1.58) and
(1.49) is simply, from Eq. (1.51)

(E% + B?), (1.59)

N~

H= Zmokc2(1 — /)Y 4 /(dr)
k

the sum of the free particle Hamiltonians and the pure field part. It appears
that the interaction has disappeared. This, of course, is not the case, because
E, B depend on the particle positions and velocities.

What about the generators? From Egs. (1.46a), (1.46d), and (1.50) we have

c

G=) orp-pr— l/(dr)zSA -E — Hét. (1.60)
k

This says that just as py is canonically conjugate to ri, —E is cononically
conjugate to A/c. In fact, if we introduce the Lagrange density according to

L= /(dr)ﬁ, (1.61)
we have from Eq. (1.36),
c 8‘.6 =-F%=_F" (1.62)
0A;

[CE. Eq. (1.13).]

1.2.1 Field Momentum and Angular Momentum
Consider a rigid displacement of the origin of the coordinate system,

r —r+Jr, (1.63)

which is sketched in Fig. 1.1. A quantity F' which is coordinate independent is
a different function of the old and new coordinates:

F(r) = F(r + dr), (1.64)
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new old

T +or

Figure 1.1: Description of a physical point P in two different coordinate systems,
labeled “old” and “new,” that differ by a displacement dr.

that is, the “new” function of the “new” coordinate is the same as the “old”
function of the “old” coordinate. Because the change in coordinates is infinites-
imal, the new function differs only slightly from the old function,

F(r) = F(r) + §F(r), (1.65)

" dF(r) = F(r —ér) — F(r) = —0r - VF(r). (1.66)

The field generator corresponding to this coordinate displacement thus is
1 1
Gy = —E/(dr)(SA E = E/(dr)[((ir -V)A]-E
1
= —E/(dr)[érx (VxA)—ér-(V)-Al-E

_ 1/(dr)[(E X B)-0r — (V -E)(A - or)]

c

c

_ 12 /(dr)(E xB)-or— > %’“A(rk) - o, (1.67)
k

where we used V - E = p and Eq. (1.51). The total generator corresponding to
the coordinate displacement is

G=> G,+Gy=P-or, (1.68)
k
where the total momentum is, from Egs. (1.60) and (1.67),
1
P = - —A - [ (dr)E x B

Z(k rk))+c/(r) X

= kavk + - /(dr)E x B, (1.69)
k

where we have used Eq. (1.47b) and introduced the relativistic mass

my, = mop(1 —vE/c?) 712 (1.70)
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The corresponding expression for the angular momentum is worked out in
the homework:

J:Zrkxmkvk+%/(dr)rx(ExB). (1.71)
k

1.3 Energy-Momentum Tensor

From this point on, we will adopt natural units, ¢ = 1 (and when we move
to quantum mechanics, i = 1). These quantities have no meaning outside the
particular scheme of choosing units, and have defined values in SI, so might
as well be defined to be unity. hc is a particularly convenient unit conversion

factor,
he =1.97 x 10~ °eV ecm = 197MeV fm. (1.72)

Now, let us consider how fields transform under four-dimensional (space-
time) coordinate transformations. For a scalar field, the field is the same at the
same physical point, so

o(z) = o(), (1.73)
where for an infinitesimal transformation
=t + dat, (1.74)
so expanding the field,
o(x) = ¢(x) + dp(x) = d(x — dx)
= ¢(z) — Opup(x)ozt, (1.75)
or
0 = =2 0,0. (1.76)
Take the derivative of this:
0ud9 = §(0,0) = —0270,0,¢ — (0,02")0,¢. (1.77)

We will take this to be the rule for how a vector field transforms:
0A, = —dz"0, A, — A,0,0z". (1.78)

A check of this last result is provided by considering a rigid spatial transla-
tion,

dz, = (0,6r), 9,0z, =0. (1.79)
Then the rule (1.78) implies correctly [cf. Eq. (1.66)]

§A, = —6r-VA,. (1.80)

For a rigid rotation
0z, = (0, 6w X r), (1.81)
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SO
&»&vj = &-ejkl&uk:vl = Ejkiéwk, (1.82)

the transformation of a three-vector field is
0A = —(0r- V)A + dw x A. (1.83)

The last term here says that A, like r, is a vector.
A tensor transforms by the obvious generalization of the transformation law
for a vector:

0F,, = —0x*0\F, — (8,062 Fy, — (0,02)F,, (1.84)
which is consistent with the result found in the homework.

Now let us calculate the change in the field part of the electrodynamic La-
grangian (1.36)

1 1
Ly= /(dr) {—gF“”(auAy = O Au) + 7" F | (1.85)
or better, the change in the corresponding action

W= /dtL, (1.86)

where now we take the integration to be over all time. Then the Lagrange
density L is defined by

W = /(dac)ﬁ, (dz) = dt(dr). (1.87)

If we substitute the field strength construction Fj,, = 0,4, — 0, A,, the change
of the Lagrange density under a coordinate transformation is

1 1
5L —§5FWF‘“’ = gda:A(aAF#l,)F‘“’ + (9,02 Fy, F*
= 02 O\L + FFF" 8,0z,

—O\(82 L) + " 9,0y, (1.88)

where the electromagnetic energy-momentum or stress tensor is
1
t = FPAFY\ 4 gL, L= —ZFO‘BFQB. (1.89)
Notice that the energy-momentum tensor is symmetric,
th =", (1.90)

When the region we are considering contains no charges, W = 0 by the sta-
tionary action principle,

0= oW = /(dx)t‘“’auéxl, (1.91)
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up to a surface term, so since the variation dz, is arbitrary at every point in
spacetime,
Outh” = 0. (1.92)

This conservation law, which is the local statement of energy-momentum conser-
vation, may be directly verified using Maxwell’s equations. How this is modified
when currents are present is also given in the homework.

Let us examine the explicit components of ¢t*”. The time-time component is
the energy density:

i 1 e}
00 = po Foi-i-ZF BFaﬁ

= E? - %(EQ - B = %(E2 + B?). (1.93)

The time-space components are the momentum density,
9 =40 = PR = Bidik B, = (E x B);. (1.94)

The stress tensor, which measures the flux of the ith component of momentum
crossing a surface perpendicular to the jth direction, is

ti = FOFI 4 ik pik 4 ik <—ZF°‘ﬁFa5)
. 1
= —E,E; + ™ BB, + 55ij(E2 - B?). (1.95)

If we use the identity
€ikl€jkm = 0ij01m — OimOij, (1.96)

we can write the result in dyadic notation
1
t=—-EE - BB + 51(E2+B2), (1.97)
which is the familiar 3-dimensional stress tensor.

1.3.1 Scale Invariance

It is of some significance that the Maxwell stress tensor is traceless:
1
t=t*\=F*PF,5+4 (‘Z) FPF,5=0. (1.98)

This reflects the scale invariance of the Maxwell theory.
A scale transformation is a particular kind of coordinate transformation,

ozt = dazt. (1.99)

Under such a transformation, the action changes by

SW = / (dx)t"" 8,6, = / ()t (60 gy + ,0,80) (1.100)
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which, because t = 0, indeed vanishes if da is constant, and, generally, by the
action principle implies
Oy (x, t") = 0. (1.101)

The conserved current here,
=z, th (1.102)

is called the scale current.



