August 22, 2011

1. Prove that
\[
\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n})(\sqrt{n+\frac{1}{2}}) = \frac{1}{2}.
\]

2. Let \(a_n = \frac{10^n}{n!} \). (a) To what limit does \(a_n \) converge as \(n \to \infty \)? (b) Is the sequence monotonic? (c) Is it monotonic from a certain \(n \) onwards? (d) Give an estimate of the difference between \(a_n \) and the limit. (e) From what value of \(n \) onwards is this difference less than \(\frac{1}{100} \)?

3. Prove that the sequence \(\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots \), converges. Find its limit.

4. For what real values of \(\alpha \) does
\[
\sum_{n=1}^{\infty} \frac{n!}{(1+\alpha)(2+\alpha)\cdots(n+\alpha)}
\]
converge?

5. Test for convergence:

(a)
\[
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
\]
(b) \[\sum_{n=1}^{\infty} \log(1 + \frac{1}{n}) \]

(c) \[\sum_{n=2}^{\infty} \frac{1}{n \log n} \]

(d) \[\sum_{n=1}^{\infty} \frac{1}{n n^{1/n}} \]

(e) \[\sum_{n=1}^{\infty} \frac{1}{n 2^n} \]

6. For what real values of \(p \) and \(q \) will the following series converge?

\[\sum_{n=2}^{\infty} \frac{1}{n^p (\ln n)^q} \]