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Thus the required rotational invariance statement is verified:

[J, H ] = [L +
1

2
Σ, H ] = iα × p − iα × p = 0. (1.49)

1.3 Translational Invariance

One of the invariances of any isolated physical system is the freedom to change
the origin of time. Let us imagine a change in the time coordinate,

t → t = t − δt, where δt is constant. (1.50)

In going from t to t, the origin of time is shifted forward by an amount δt.
Under such a change, states and operators do not change. However, we want
to introduce new states and operators which have the same properties relative
to the new time coordinate t as the old states and operators had relative to the
old time coordinate t:

t coordinate : X, | 〉, 〈 |, (1.51a)

t coordinate : X, | 〉, 〈 |. (1.51b)

The new states and operators have the same inter-relations as the old states
and operators; therefore, the two sets are related by a unitary transformation:

X = U−1XU, U−1 = U †, (1.52a)

〈 | = 〈 |U, | 〉 = U †| 〉. (1.52b)

What can we say about the unitary operator U? If δt = 0, the change in the
states and operators is zero, so U = 1. If δt 6= 0, but very small, U must differ
infinitesimally from 1. We therefore write

U = 1 − i

h̄
δt H. (1.53)

We’ll see in a moment why it’s convenient to have the −i/h̄ factor. What are
the properties of H? U must be unitary so

1 = U †U =

(

1 +
i

h̄
δt H†

) (

1 − i

h̄
δt H

)

= 1 − i

h̄
(H − H†)δt + O(δt2). (1.54)

Therefore H must be Hermitian, H = H†, which is why the i was put in front.
We conclude that H is a physical quantity. It corresponds to the energy of
the system; we call it the energy operator or the Hamiltonian. It has the right
dimensions to be an energy, since [h̄] = energy × time. The Hamiltonian is the
generator of time translations.

A dynamical variable is an operator characterizing in part a dynamical sys-
tem, which changes as time evolves. An example we’ve discussed so far is the
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angular momentum J. Let v(t) be some dynamical variable. What happens
under a displacement of the time origin?

t → t = t − δt, (1.55a)

v(t) → v(t + δt) = v(t), (1.55b)

where v is the new (transformed) variable. By definition, the new variable at
the new time is the old variable at the old time. This is what is meant by
saying that the new operators have the same properties relative to the new time
coordinate as the old operators have relative to the old coordinate. Now, simply
changing the name of the variable,

v(t) = v(t + δt) = v(t) + δt
d

dt
v(t) = v(t) − δv(t), (1.56)

where δv(t) is just the change in the operator at the same value of the time
coordinate,

δv(t) = v(t) − v(t). (1.57)

On the other hand, we can compute δv from the unitary operator U :

v(t) = U †v(t)U

=

(

1 +
i

h̄
δt H

)

v(t)

(

1 − i

h̄
δt H

)

= v(t) +
1

ih̄
δt[v(t), H ]. (1.58)

Hence,

δv(t) = −δt
1

ih̄
[v(t), H ], (1.59)

or from (1.56)
d

dt
v(t) =

1

ih̄
[v(t), H ], (1.60)

which is the Heisenberg equation of motion.
For a finite time displacement, say by an amount t, the time evolution op-

erator is
U(t) = e−iHt/h̄. (1.61)

In a very similar way, we can talk about the translation of the origin of
spatial coordinates. Consider an infinitesimal shift of the origin by an amount
δr. Consequently, a point located at position r in the original coordinate system
is located at r in the new coordinate system, where

r = r − δr. (1.62)

As before, let the barred states and operators have the same properties relative
to the new coordinate system as the unbarred states do relative to the old:

r coordinates : X, | 〉, 〈 |, (1.63a)

r coordinates : X, | 〉, 〈 |, (1.63b)
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and these two sets are related by a unitary transformation:

X = U †XU, 〈 | = 〈 |U, | 〉 = U †| 〉. (1.64)

For an infinitesimal transformation of coordinates we write the unitary op-
erator as

U = 1 +
i

h̄
δr · P, P = P†, (1.65)

where P, the generator of spatial translations, is the linear momentum operator.
Since if we first make a displacement along the x axis, and then a displacement
along the y axis, we end up with the same coordinate system as if we had first
displaced along the y axis and then along the x axis,

UδxUδy = UδyUδx, (1.66)

or
(

1 +
i

h̄
δxPx

) (

1 +
i

h̄
δyPy

)

=

(

1 +
i

h̄
δyPy

) (

1 +
i

h̄
δxPx

)

, (1.67)

or
PxPy = PyPx, (1.68)

[Px, Py] = 0. (1.69)

The different components of P commute with each other.
Operators transform according to

X = U †XU =

(

1 − i

h̄
δr ·P

)

X

(

1 +
i

h̄
δr · P

)

= X − 1

ih̄
[X,P] · δr = X − δX, (1.70)

where

δX =
1

ih̄
[X,P] · δr. (1.71)

A finite displacement of the coordinate system by r is implemented by

U(r) = eiP·r/h̄. (1.72)

All of this is precisely the same as in nonrelativistic quantum mechanics.

1.4 Lorentz Covariance

The Lorentz group is the group of transformations that preserves the length

xµxµ = x2 − t2, (1.73)

which defines the light cone. Evidently, continuous transformations that do this
are:
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1. Ordinary rotations, for example, a rotation about the z axis,

x → x = x cos θ + y sin θ, (1.74a)

y → y = y cos θ − x sin θ, (1.74b)

z → z = z, (1.74c)

t → t = t, (1.74d)

or, infinitesimally,
x → x− δx, δx = δθ × x, (1.75)

where, for an infinitesimal rotation about the z axis,

δθ = δθẑ, (1.76)

so in agreement with (1.74d),

δx = −yδθ, δy = xδθ. (1.77)

2. “Boosts,” or imaginary rotations, which correspond to passing from one
inertial frame to another one moving relative to the first with velocity v.
If the latter lies along the x axis, for example,

t → t = t coshφ + x sinhφ, (1.78a)

x → x = x coshφ + t sinhφ, (1.78b)

which for an infinitesimal boost reads

δt = −xδφ, δx = −tδφ, (1.79)

while y and z are unchanged. Consider a particle at rest in the original
frame, dx/dt = 0. In the new frame it will have velocity

dx

dt
=

dx

dt

dt

dt
=

sinhφ

coshφ
= tanhφ = −v, (1.80)

which is just the relative velocity of the two frames. Thus we recover the
elementary form of the Lorentz transformation,

sinhφ = − v√
1 − v2

, coshφ =
1√

1 − v2
. (1.81)

Now under a transformation of the space-time coordinates,

x → x = x − δx, δx = δv t (1.82a)

t → t = t − δt, δt = δv · x, (1.82b)

the quantum states undergo a unitary transformation

〈 | → 〈 | = 〈 |U, (1.83a)

| 〉 → | 〉 = U †| 〉, (1.83b)
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where U is unitary, that is

U † = U−1. (1.84)

Now the barred state vectors bear the same relation to the barred coordinate
system as the unbarred state vectors do to the unbarred coordinates. Operators
change as follows under a unitary transformation

X → X = U †XU. (1.85)

For an infinitesimal transformation,

U = 1 + iG, (1.86)

where the “generator” G of the transformation must be Hermitian,

G = G†, (1.87)

so that

U−1 = U † = 1 − iG. (1.88)

Thus, the infinitesimal transformation of an operator is

X → X − δX, δX =
1

i
[X, G]. (1.89)

For an ordinary rotation given by

δx = δω × x, (1.90)

The generator is taken to be G = J · δω. Since J is a vector as well as the
generator of rotations,

δJ = δω × J =
1

i
[J,J · δω], (1.91)

or in component form

ǫijkδωjJk =
1

i
[Ji, Jlδωl], (1.92)

from which follows the familiar commutation relation for the angular momentum
operator,

[Ji, Jj] = iǫijkJk. (1.93)

The generator for the boost δv is G = N · δv. Since N is also a vector, we
have immediately

[Ni, Jj] = iǫijkNk. (1.94)

To figure out the commutation relations for N , we need to consider more
closely the effects of successive transformations. Suppose we consider two suc-
cessive transformations, labeled 1 and 2, but undo them in the opposite order.
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The resulting unitary operator we denote as U[12], where, where for infinitesimal
transformations

U[12] = U−1
1 U−1

2 U1U2

= (1 − iG1)(1 − iG2)(1 + iG1)(1 + iG2)

= 1 − G1G2 + G2G1, (1.95)

where we have ignored quadratic terms but not bilinear ones. Thus the generator
of the net transformation is

iG[12] = −[G1, G2].‘ (1.96)

Let us check this result for the case of rotations, where

iJ · δω[12] = −[J · δω1,J · δω2]. (1.97)

But geometrically,
δω[12] = δω2 × δω1 (1.98)

because we follow
x = x − δω2 × x (1.99)

by

x = x − δω1 × x = x− δω2 × x − δω1 × x + δω1 × (δω2 × x), (1.100)

so
−[δ1, δ2]x = δω1 × (δω2 × x) − δω2 × (δω1 × x). (1.101)

But we recall the vector identity

A × (B× C) + C× (A × B) + B× (C × A) = 0. (1.102)

Thus
[δ1, δ2]x = δω[12] × x, (1.103)

according to (1.98). Thus from (1.97) follows the angular momentum commu-
tation relations

[Ji, Jj ] = iǫijkJk. (1.104)

Now, for two successive boosts, according to (1.82a) and (1.82b),

δ1x = tδv1, δ1t = δv1 · x, (1.105a)

δ2x = tδv2, δ2t = δv2 · x, (1.105b)

we have

x = x − tδv2, t = t − δv2 · x, (1.106a)

x = x − tδv1 = x − t(δv1 + δv2) + δv1(δv2 · x), (1.106b)

t = t − δv1 · x = t − (δv1 + δv2) · x + δv1 · δv2t, (1.106c)
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from which we conclude that

−[δ1, δ2]x = δv1(δv2 · x) − δv2(δv1 · x) = −(δv1 × δv2) × x, (1.107a)

−[δ1, δ2]t = (δv1 · δv2)t − (δv2 · δv1)t = 0. (1.107b)

Thus the net effect of the succession of boosts, first in one order, and then in the
reverse, is a rotation about the axis perpendicular to the axes of the individual
boosts,

δω[12] = δv1 × δv2. (1.108)

From the composition property of the generators (1.96), we conclude

iJ · δω[12] = −[N · δv1,N · δv2], (1.109)

or, in view of (1.108),
[Ni, Nj ] = −iǫijkJk. (1.110)

Let us disentangle our algebra by defining

J(±) =
1

2
(J ± iN), (1.111)

so that the generators for rotations and boosts are written as

J = J(+) + J(−), N = −i(J(+) − J(−)), (1.112)

where J(+)† = J(−). Then it is easy to check that

[J
(±)
i , J

(±)
j ] = iǫijkJ

(±)
k , (1.113a)

[J
(±)
i , J

(∓)
j ] = 0. (1.113b)

That is, J(+) and J(−) constitute two commuting angular momenta.

The finite unitary transformation corresponding to rotations and boosts are

UR(θ, e) = exp
{

iθe · [J(+) + J(−)]
}

, (1.114a)

UB(φ, e) = exp
{

−φe · [J(+) − J(−)]
}

, (1.114b)

where e is the axis of the rotation, or the direction of the boost, respectively,
and θ is the rotation angle, and φ the “rapidity” (1.81).

In group theory terms we have shown that that the Lorentz group equals

SO(3, 1) = SU(2) × SU(2), (1.115)

The irreducible representations of the Lorentz group are therefore labelled by the
eigenvalues of (J(+))2, which are s+(s++1) and of (J(−))2, which are s−(s−+1).
We label the irreducible representations by the ordered pair (s+, s−) where s±
are either integers or integers plus one-half.

Here are some examples:
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• (0, 0) is a scalar.

• (1/2, 0) is a left-handed spinor.

• (0, 1/2) is a right-handed spinor.

• (1/2, 1/2) is a vector.


