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Mesons, then are described by a wavefunction

Φ = qaqa, (6.23)

and baryons by
Ψ = ǫabcqaqbqc. (6.24)

This resolves the old paradox that ground state wavefunctions tend to be sym-
metric, in violation of the Pauli principle. For example, the famous spin 3/2
baryon resonance, composed of three up quarks,

∆++(1232) = uuu, (6.25)

has a symmetric wavefunction in space and spin (l = 0), because

Sz =
1

2
+

1

2
+

1

2
=

3

2
. (6.26)

However, the requirement of the Fermi-Dirac statistics that the state be totally
antisymmetric under the interchange of its fermionic components is satisfied
because it is antisymmetric in color.

6.1 Quadratic Casimir Invariants

For a representation R, let the generators be Ta(R). Then we define the
quadratic Casimir invariant by

∑

a

Ta(R)2 = C2(R)I. (6.27)

For example, for the fundamental representation 3 of SU(3),

Ta(3) =
λa

2
, (6.28)

so

Tr
∑

a

(

λa

2

)2

=
∑

a

1

2
δaa = 4 = 3C2(3), (6.29)

or

C2(3) =
4

3
. (6.30)

For the fundamental representation 8

(Ta(8))bc = ifabc, (6.31)

so
−

∑

a

fabcfacd = C2(8)δbd, (6.32)

so setting b = d and summing on all three indices

8C2(8) = −fabcfacb = f2
abc = 6

(

1 +
6

4
+ 2

3

4

)

= 24, (6.33)

where the last step is supplied by your homework, or

C2(8) = 3. (6.34)
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Figure 6.2: Propagators in QCD. Here ξ is an arbitrary gauge parameter. Ghosts
occur only inside loops, and like fermions have a −1 associated with the loop.

6.2 Asymptotic Freedom

From the QCD Lagrangian

LQCD = −
1

4
F a

µνF
µν
a −

∑

f

qf

(

γ
1

i
D +m

)

qf + Lgf , (6.35)

where the added term is the gauge fixing term (for example, see Peskin and
Schroeder) we can deduce the Feynman rules shown in Figs. 6.2 and 6.3.

Renormalization proceeds similarly to the scalar case discussed in Chapter
3. The bare fields are related to the renormalized ones by

Aa,µ
0 = Z

1/2
3 Aa,µ, ψ0 = Z

1/2
2 ψ. (6.36)

The quark mass is renormalized according to

m0Z2 = m+ δm, (6.37)

where we recall that the relation between the bare mass and the renormalized
mass terms in the Lagrangian is

m0ψ0ψ0 = mψψ + δmψψ. (6.38)

Consider the corresponding equivalence between the quark-gluon coupling terms:

g0ψ0γ
µλ

a

2
ψ0(Aµ)0 = (g + δg)ψγµλ

a

2
ψAµ. (6.39)

From this we see that the relation between the bare and renormlized coupling
constants is

g0Z2Z
1/2
3 = g + δg ≡ Z1g, (6.40)
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Figure 6.3: Feynman rules for vertices in QCD. Here the convention is that all
momenta flow into the vertex.

or

g0 = Z1Z
−1
2 Z

−1/2
3 g. (6.41)

This is because the vertex involves both vertex and proper vertex corrections.

Let us illustrate the process by computing the quark contribution to Z3. It
is the generalization of the vacuum polarization graph we computed before in
Section 4.5, and is in d dimensions

iΠab
αβ = −

(

−
ig

2

)2 ∫

ddp

(2π)d
Tr

[

γαλ
a −i

m− γp− iǫ
γβλ

b −i

m− γp+ γq − iǫ

]

.

(6.42)
Recall Trλaλb = 2δab, and the Dirac trace is

Tr [γα(m+ γp)γβ(m+ γp− γq)]

= m2Tr γαγβ + Tr γαγpγβγ(p− q)

= −4m2gαβ − 4[pα(p− q)β + pβ(p− q)α − gαβp(p− q)]. (6.43)

Anticipating the change of variable that will follow, we note that the last par-
enthetical term can be written as

[(p−qu)+qu]α[p−qu−q(1−u)]β+(α↔ β)−gαβ[(p−qu)+qu][(p−qu)−q(1−u)].
(6.44)
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Now the denominators may be combined by the usual exponential trick

1

m2 + p2 − iǫ

1

m2 + (p− q)2 − iǫ
= −

∫

∞

0

ds s

∫ 1

0

du e−isχ(u), (6.45)

where

χ(u) = (1−u)(m2 +p2)+u[m2 +(p−q)2] = m2 +(p−qu)2 +q2u(1−u). (6.46)

Now when we integrate this over momentum we get

−

∫

∞

0

ds s
i

(2π)d

( π

is

)d/2
∫ 1

0

du e−is[m2+q2u(1−u)]

=
i

2dπd/2
Γ(2 − d/2)

∫ 1

0

du[m2 + q2u(1 − u)]d/2−2. (6.47)

Since we are here interested only in ultraviolet behavior, let us drop the quark
mass, and to keep this quantity properly dimensionless insert a factor of µ4−d,
where µ is some arbitrary mass scale. Then the above is simply

i

2dπd/2

(

q2

µ2

)d/2−2

Γ(2 − d/2)
Γ(d/2 − 1)2

Γ(d− 2)
=

i

16π2

(

q2

µ2

)

−ǫ/2

Γ(ǫ/2), (6.48)

where we have let d approach 4: d = 4− ǫ. We still have to integrate over p−qu
in the numerator. A linear term of this will vanish by symmetry, and for the
quadratic term we consider

∫

ddp

(2π)d
pαpβe−isp2

= Agαβ . (6.49)

Take the trace of this:

Ad =

∫

ddp

(2π)d
p2e−isp2

= −
1

i

d

ds

∫

ddp

(2π)d
e−isp2

. (6.50)

This gives the following relative evaluation

〈pαpβ〉 = gαβ 1

2

Γ(1 − d/2)

Γ(2 − d/2)
q2u(1 − u). (6.51)

Therefore in the massless limit,

iΠab
αβ(q) =

g2

4
2δab i

16π2

2

ǫ

(

q2

µ2

)

−ǫ/2

(−4)

∫ 1

0

du[u(1 − u)]−ǫ/2

×
[

−2qαqβu(1 − u) − gαβq
2u(1 − u) − gαβ [−q2u(1 − u) − 2q2u(1 − u)]

]

= ig2δab 1

12π2

1

ǫ

(

q2

µ2

)

−ǫ/2

(qαqβ − gαβq
2) + finite terms. (6.52)
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This is all there is in QED, where there are no non-Abelian couplings, and
Z1 = Z2. The result for QED is obtained from this by the replacement g2δab →
2e2. If we sum the geometric series

−i

q2
+

−i

q2
iΠ(q)

−i

q2
+ . . . =

−i

q2 − Π(q)
, (6.53)

and so we see

Z3 = 1 −
e2

6π2

1

ǫ
. (6.54)

Actually, we have already obtained this result in (4.98), where we recognize the
coefficient of − 1

4F
2 in the first line as Z−1

3 where

Z3 = 1 −
e2

12π2

∫

∞

s0

ds

s
e−m2s = 1 +

e2

12π2
lnm2s0. (6.55)

This is the same as the above when we identify 2/ǫ with lnm2s0. The corre-
sponding β function is

βQED = s0
∂

∂s0
Z3e =

e3

12π2
> 0. (6.56)

For QCD, we must multiply the above by nf , the number of quark flavors,
and add the other contributions to the vacuum polarization, for gluon and ghost
loops, which you will calculated in homework:

iΠab
αβ(q) = iδab(qαqβ − gαβq

2)
g2

8π2

(

q2

µ2

)

−ǫ/2
1

ǫ

[

nf

2
C2(3) −

5

3
C2(8)

]

, (6.57)

or

Z3 = 1 −
g2

8π2

(

µ

µR

)ǫ
1

ǫ

[

nf

2
C2(3) −

5

3
C2(8)

]

+O(g2), (6.58)

where µR is the renormalization scale. From the quark and gluon vertices you
will find

Z1 = 1 − [C2(3) + C2(8)]
g2

8π2

(

µ

µR

)ǫ
1

ǫ
, (6.59)

while from the quark propagator we get

Z2 = 1 − C2(3)
g2

8π2

(

µ

µR

)ǫ
1

ǫ
. (6.60)

(Note that the coefficients of C2(3) are the same for Z1 and Z2 – hence the
remark above.) Therefore, by simple addition we obtain from (6.41)

g

g0
= 1 +

g2

8π2

(

µ

µR

)ǫ
1

ǫ

[

−
nf

4
C2(3) +

11

6
C2(8)

]

. (6.61)
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We define the beta function by the logarithmic derivative of g with respect
to the renormalization point,

β = µR
∂g

∂µR
= −

g3

16π2
(11 −

2

3
nf ), (6.62)

where we have now inserted the values for the Casimir invariants from (6.30)
and (6.34). This will be negative provided nf ≤ 16. (Notice for QED, where
there is only the fermionic contribution, β is always positive.) The running
coupling constant g(Q2) is then given by

Q
dg

dQ
= −β1g

3, (6.63)

where β1 is the positive coefficient of −g3 in β, which is integrated by

dg

g3
= −β1

dQ

Q
, (6.64)

which implies
1

2g2
−

1

2g2
0

= β1 ln
Q

Q0
=
β1

2
ln
Q2

Q2
0

. (6.65)

Let g0 = ∞ at Q = Q0; then we have

g2 =
1

β1 lnQ2/Q2
0

. (6.66)

Explicitly, we have the running strong coupling given by

αs =
g2

4π
=

12π

(33 − 2nf) lnQ2/Λ2
(6.67)

where we have now called Q0 = Λ, which is the scale of QCD, experimentally
about 200 MeV. This exhibits the property of asymptotic freedom, that the
coupling decreases with increasing energy.
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Figure 6.4: The behavior of the running coupling constant calculated by different
methods as a function of the dimensionless variable s = q2/Λ2. This figure is
extracted from K. A. Milton and O. P. Solovtsova, Phys. Rev. D 57, 5402 (1998).


