Chapter 5

Non-Abelian Gauge Fields

The simplest example starts with two Fermions (Dirac particles) ¢1, ¥9, degen-
erate in mass, and hence satisfying in the absence of interactions

(7%8 +m)y =0, (7%8 +m)ihy = 0. (5.1)
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We can define a two-component object ¢ = < ) with the associated action

W= /(d:c)ﬁ, L=—¢ (7%6 + m> . (5.2)

If U is a constant 2 x 2 matrix, £ is invariant under the replacement 1y — U1,
provided U is unitary,
U'v =UU = 1. (5.3)

We know that the most general unitary 2 x 2 matrix, apart from a pure phase
factor [U(1) transformation], can be written in terms of the Pauli matrices T as
, -
U = M = cos A + 1|T|T sin | Al
[ cosA+ i5\3 sin A\ (z’j\l + 5\2) sin A
(iA1 — A2)sin A cos A —iAzsin\ )’

(5.4)

where X is a arbitrary vector. The generators of these transformations are the
Pauli matrices, which obey the algebra

[T, Tb] = 24erC, (5.5)

Because 9 .9 .o
det U = cos® X\ + (A3 + A} + Ay)sin? A =1, (5.6)

this actually represents an SU(2) transformation.
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Now suppose we gauge the symmetry, by letting A — A(z). Then L is not
invariant,

5L — —EUW“%((?HUW ~ =00\ - Py T, (5.7)

for S\ infinitesimal. We see here the conserved “isospin” current [compare
(2.33)]

oW = -2 /(d:c)(?#(D\ =0, (5.8)
where
¥ =GP, o o= Sy, (59)
which is conserved, by the stationary action principle,
ouj" =0. (5.10)

How can we cancel £ identically? Evidently, by couping to this current a
triplet of vector fields,
A, = (A, A2 A%, (5.11)

as follows: -
Line = 9Au 07" S0, (5.12)

where under an infinitesimal gauge transformation
A, —A,+0,0w, (5.13)

where dw is related to dA:
SA = géw. (5.14)

But this is not the whole story! That is because the 1 variation of £, is

T

2
= 92%“5 (Ap x dw)h # 0. (5.15)

— )
6¢£i1nt = _1/}7H gA#v ggT : 5“) 1/)

This will be cancelled if we modify our A, variation to
A, — A, +0,0w—gow x A, (5.16)

This last is in fact the transformation law for a vector under an ordinary ro-
tation. Mathematically, we say that these gauge fields transform as the spin-1
(adjoint) representation of SU(2).

Now assemble the Fermion parts of L:

Li=—1 (y%D + m) W, (5.17)
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where the gauge covariant derivative is

1

DM:(’?H—QQT-AH. (5.18)
Under a gauge transformation,
D, —U'DJU = D,,. (5.19)
That is,
T
DL] = au—zg§~Ag
]
=UD,U'=U (aﬂ - 597 A#> Ut
=0, — %gUTUT ‘A, +UdUT, (5.20)
which says _
T AU =vZyut. A, + lvout (5.21)
2 TH T2 Blg '
which generalizes the infinitesimal transformation given in (5.16). Indeed if
, T
U=1+igdw - 5 (5.22)
we get
T T T . T 1. T
= % ‘A, - z% CigA,, X 6w + g Db, (5.23)

which agrees with (5.16).
It is obviously convenient to define a matrix representation for the gauge
fields:

Ay = g ‘A, (5.24)
Then the above gauge transformation (5.21) reads
)
ATV =UA U + EUZ)#UT, (5.25)
and the covariant derivative is
D, = 0, — igA,. (5.26)

This last includes the Abelian case, where U = e¢***, 7/2 — 1, which is a U(1)
gauge group. To pick out the components of the gauge field, we recall that

TaTo = 5ab + Z.eadec; (527&)
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so because Tr1 = 2 we have
Tr 7,7 = 204p. (5.27b)

Therefore -
A% =Ty (TGE -A) = Tr (r,A,). (5.28)

Is the above interaction, minimal substitution, the end of the story? No,
because we must consider the gauge field part of the action. Now

[D,uv D,,] = [‘% - igA;n Oy — Z'gA,,]
= —ig(0, Ay — 0, Ay) — QQ[AM Al (5.29)
Because our fields are non-Abelian, this last commutator is nonzero. Explicitly,

A A = |5 A T A = 57 (A x A). (5.30)

We will define the commutator as the field strength,
[Dy; D] = —igFu, (5.31)

where
Fu = (04A, — 0,A,) —ig[Au, Ay (5.32)
In terms of components, related to F},,, by

T

Fu =5 Fu, (5.33)
we have
Ff, = 0,A5 — 0,A% + ge™ AL AS, (5.34a)
or
Fu =0,A, —0,A, +gA, x A,. (5.34b)

Why is this a useful quantity? Because it transforms covariatly,
F., — FY, = 1[DY, DY) = UF,, U, (5.35)
g
unlike the potential, as seen in (5.25). In infinitesimal form this means

F,. —F, —gowxF,,. (5.36)

From the field strength, the gauge field part of the Lagrangian can be con-
structed. (Why? Because it’s gauge invariant!)

1 1
Eg = —5’1‘1? FMUFMU = —ZFHV . FHV' (537)
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Under a gauge transformation, £, — L£4. Explicitly,

L, = —%@AV —9,A,) - (O"AY — 9V AM)

- g(aﬂA,, —0,A,) - (A" x AY)
2
g v v
~ (AL AFALAY AL ALAMAY), (5.38)
because
Eabceade _ 5bdace _ 5be5cd. (539)

Note that the requirement of gauge invariance necessarily leads to cubic and
quartic self-interactions of the gauge field, with the same coupling constnat as
appears in the gauge-field—fermion interaction.

5.1 Summary
For an arbitrary gauge group, the Lagrangian is
L=—9) <7%D + m) P — %Tr F?, (5.40)
where the gauge covariant derivative is
D, =0, —194,, (5.41)
and the gauge-covariant field strength is
F=0,A, —0,A, —iglA,, A (5.42)

This Lagrangian is invariant under the gauge transformations

Y — U, (5.43a)

A, — UAU + 2U0,U1, (5.43b)
g

F,, — UFE,UT. (5.43c)

For SU(2), more explicitly, the Lagrangian is

— 1 . T 1.
L=y [”’“2 (0 —ig5 - Au) “"} Y= gF Fu, (5.44)

where the field strength is
F. =0,A, —0,A,+gA, xA,. (5.45)
The gauge transformations are

U =e9wT/2 (5.46)
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so for an infinitesimal transformation, w — dw,

b — (1 +igow - %) b, (5.472)
A, - A, —géwx A, +0,0w, (5.47b)
F,, = F, —gow xF,,. (5.47¢)

From the Lagrangian we can derive the equations of motion: Varying with
respect to ¢ gives the gauge-covariant Dirac equation,

(’y“lDH + m) P = 0. (5.48)
i
Under a 64, transformation,
SL = Pyt gsAnh — Tr F* (20,6 A, — 2igA,0A, — 2igSALA,), (5.49)

so for SU(2) the change in the action is
SW = / (dz)SA,, - (%Hggw +0,F" 4 gFM x A,,) , (5.50)

where we have used (5.45). Thus, the Yang-Mills equation (the generalization
of Maxwell’s equation) is
o0, F" = jt, (5.51)

with the current _ -
J =g+ gAL X FR. (5.52)

The current has both fermion and gauge-boson pieces. Alternatively, we can
define a gauge covariant derivative for the adjoint (isospin-1) representation of
SU(2) by

D, =109, —gA,x, (5.53a)
v . "y T
D, -F" = gif = 901" 59, (5.53Db)
where D, is a tensor, with components

(Dv)ab = Sab0y + geabe Ay (5.53c)



