
Chapter 5

Non-Abelian Gauge Fields

The simplest example starts with two Fermions (Dirac particles) ψ1, ψ2, degen-
erate in mass, and hence satisfying in the absence of interactions

(γ
1

i
∂ +m)ψ1 = 0, (γ

1

i
∂ +m)ψ2 = 0. (5.1)

We can define a two-component object ψ =

(

ψ1

ψ2

)

with the associated action

W =

∫

(dx)L, L = −ψ

(

γ
1

i
∂ +m

)

ψ. (5.2)

If U is a constant 2 × 2 matrix, L is invariant under the replacement ψ → Uψ,
provided U is unitary,

U †U = UU † = 1. (5.3)

We know that the most general unitary 2 × 2 matrix, apart from a pure phase
factor [U(1) transformation], can be written in terms of the Pauli matrices τ as

U = eiλ·τ = cos |λ| + i
λ · τ

|λ|
sin |λ|

=

(

cosλ+ iλ̂3 sinλ (iλ̂1 + λ̂2) sinλ

(iλ̂1 − λ̂2) sinλ cosλ− iλ̂3 sinλ

)

, (5.4)

where λ is a arbitrary vector. The generators of these transformations are the
Pauli matrices, which obey the algebra

[τa, τb] = 2iǫabcτc. (5.5)

Because
detU = cos2 λ+ (λ̂

2

3 + λ̂
2

1 + λ̂
2

2) sin2 λ = 1, (5.6)

this actually represents an SU(2) transformation.
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Now suppose we gauge the symmetry, by letting λ → λ(x). Then L is not
invariant,

δL = −ψU †γµ
1

i
(∂µU)ψ ≈ −∂µδλ · ψγµτψ, (5.7)

for δλ infinitesimal. We see here the conserved “isospin” current [compare
(2.33)]

δW = −2

∫

(dx)∂µδλ · jµ = 0, (5.8)

where

jµ =
1

2
ψγµτψ, or jaµ =

1

2
ψγµτ

aψ, (5.9)

which is conserved, by the stationary action principle,

∂µj
µ = 0. (5.10)

How can we cancel δL identically? Evidently, by couping to this current a
triplet of vector fields,

Aµ = (A1

µ, A
2

µ, A
3

µ), (5.11)

as follows:

LI
int

= gAµ · ψγµ
τ

2
ψ, (5.12)

where under an infinitesimal gauge transformation

Aµ → Aµ + ∂µδω, (5.13)

where δω is related to δλ:

δλ =
g

2
δω. (5.14)

But this is not the whole story! That is because the ψ variation of LI
int

is

δψL
I
int = −ψγµ

[

τ

2
· gAµ,

i

2
gτ · δω

]

ψ

= g2ψγµ
τ

2
· (Aµ × δω)ψ 6= 0. (5.15)

This will be cancelled if we modify our Aµ variation to

Aµ → Aµ + ∂µδω − gδω × Aµ. (5.16)

This last is in fact the transformation law for a vector under an ordinary ro-
tation. Mathematically, we say that these gauge fields transform as the spin-1
(adjoint) representation of SU(2).

Now assemble the Fermion parts of L:

Lf = −ψ

(

γ
1

i
D +m

)

ψ, (5.17)
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where the gauge covariant derivative is

Dµ = ∂µ −
i

2
gτ ·Aµ. (5.18)

Under a gauge transformation,

Dµ → U †DU
µ U = Dµ. (5.19)

That is,

DU
µ = ∂µ − ig

τ

2
· AU

µ

= UDµU
† = U

(

∂µ −
i

2
gτ ·Aµ

)

U †

= ∂µ −
i

2
gUτU † ·Aµ + U∂µU

†, (5.20)

which says
τ

2
·AU

µ = U
τ

2
U † ·Aµ +

i

g
U∂µU

†, (5.21)

which generalizes the infinitesimal transformation given in (5.16). Indeed if

U = 1 + igδω ·
τ

2
, (5.22)

we get

τ

2
· AU

µ =
τ

2
· Aµ −

[

τ

2
, igδω ·

τ

2

]

· Aµ −
i

g
ig

τ

2
· ∂µδω

=
τ

2
· Aµ − i

τ

2
· igAµ × δω +

τ

2
· ∂µδω, (5.23)

which agrees with (5.16).
It is obviously convenient to define a matrix representation for the gauge

fields:
Aµ =

τ

2
· Aµ. (5.24)

Then the above gauge transformation (5.21) reads

AUµ = UAµU
† +

i

g
U∂µU

†, (5.25)

and the covariant derivative is

Dµ = ∂µ − igAµ. (5.26)

This last includes the Abelian case, where U = eieλ, τ/2 → 1, which is a U(1)
gauge group. To pick out the components of the gauge field, we recall that

τaτb = δab + iǫabdτc, (5.27a)
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so because Tr 1 = 2 we have

Tr τaτb = 2δab. (5.27b)

Therefore

Aaµ = Tr
(

τa
τ

2
·A

)

= Tr (τaAµ). (5.28)

Is the above interaction, minimal substitution, the end of the story? No,
because we must consider the gauge field part of the action. Now

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν]

= −ig(∂µAν − ∂νAµ) − g2[Aµ, Aν ]. (5.29)

Because our fields are non-Abelian, this last commutator is nonzero. Explicitly,

[Aµ, Aν ] =
[

τ

2
· Aµ,

τ

2
· Aν

]

=
i

2
τ · (Aµ × Aν). (5.30)

We will define the commutator as the field strength,

[Dµ, Dν ] = −igFµν, (5.31)

where

Fµν = (∂µAν − ∂νAµ) − ig[Aµ, Aν ]. (5.32)

In terms of components, related to Fµν by

Fµν =
τ

2
· Fµν , (5.33)

we have

F aµν = ∂µA
a
ν − ∂νA

a
µ + gǫabcAbµA

c
ν , (5.34a)

or

Fµν = ∂µAν − ∂νAµ + gAµ × Aν . (5.34b)

Why is this a useful quantity? Because it transforms covariatly,

Fµν → FUµν =
i

g
[DU

µ , D
U
ν ] = UFµνU

†, (5.35)

unlike the potential, as seen in (5.25). In infinitesimal form this means

Fµν → Fµν − gδω × Fµν . (5.36)

From the field strength, the gauge field part of the Lagrangian can be con-
structed. (Why? Because it’s gauge invariant!)

Lg = −
1

2
TrFµνFµν = −

1

4
Fµν · Fµν . (5.37)
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Under a gauge transformation, Lg → Lg. Explicitly,

Lg = −
1

4
(∂µAν − ∂νAµ) · (∂

µAν − ∂νAµ)

−
g

2
(∂µAν − ∂νAν) · (A

µ × Aν)

−
g2

4
(Aµ ·AµAν · A

ν − Aµ ·AνA
µ ·Aν), (5.38)

because
ǫabcǫade = δbdδce − δbeδcd. (5.39)

Note that the requirement of gauge invariance necessarily leads to cubic and
quartic self-interactions of the gauge field, with the same coupling constnat as
appears in the gauge-field–fermion interaction.

5.1 Summary

For an arbitrary gauge group, the Lagrangian is

L = −ψ

(

γ
1

i
D +m

)

ψ −
1

2
TrF 2, (5.40)

where the gauge covariant derivative is

Dµ = ∂µ − igAµ, (5.41)

and the gauge-covariant field strength is

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (5.42)

This Lagrangian is invariant under the gauge transformations

ψ → Uψ, (5.43a)

Aµ → UAµU
† +

i

g
U∂µU

†, (5.43b)

Fµν → UFµνU
†. (5.43c)

For SU(2), more explicitly, the Lagrangian is

L = −ψ

[

γµ
1

i

(

∂µ − ig
τ

2
·Aµ

)

+m

]

ψ −
1

4
Fµν ·Fµν , (5.44)

where the field strength is

Fµν = ∂µAν − ∂νAµ + gAµ × Aν . (5.45)

The gauge transformations are

U = eigω·τ /2, (5.46)
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so for an infinitesimal transformation, ω → δω,

ψ →
(

1 + igδω ·
τ

2

)

ψ, (5.47a)

Aµ → Aµ − gδω × Aµ + ∂µδω, (5.47b)

Fµν → Fµν − gδω × Fµν . (5.47c)

From the Lagrangian we can derive the equations of motion: Varying with
respect to ψ gives the gauge-covariant Dirac equation,

(

γµ
1

i
Dµ +m

)

ψ = 0. (5.48)

Under a δAµ transformation,

δL = ψγµgδAµψ − TrFµν (2∂µδAν − 2igAµδAν − 2igδAµAν) , (5.49)

so for SU(2) the change in the action is

δW =

∫

(dx)δAµ ·
(

ψγµg
τ

2
ψ + ∂νF

νµ + gFµν × Aν

)

, (5.50)

where we have used (5.45). Thus, the Yang-Mills equation (the generalization
of Maxwell’s equation) is

∂νF
µν = jµ, (5.51)

with the current
jµ = ψγµg

τ

2
ψ + gAν × Fνµ. (5.52)

The current has both fermion and gauge-boson pieces. Alternatively, we can
define a gauge covariant derivative for the adjoint (isospin-1) representation of
SU(2) by

Dν = 1∂ν − gAν× , (5.53a)

Dν ·F
µν = gjµf = gψγµ

τ

2
ψ, (5.53b)

where Dν is a tensor, with components

(Dν)ab = δab∂ν + gǫabcA
c
ν . (5.53c)


