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The first term here describes a modification of the electron propagator, which
is involved in renormalization of the mass of the electron. The second term is
what is of interest here:
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and then the vacuum amplitude (4.55) is
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This is interpreted as a correction to the g-factor of the electron, where g = 2
for a particle described by the Dirac equation:
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which is to be compared to the experimental value
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= 0.01159652187(4); (4.77)

the discrepancy is entirely due to higher order QED effects, which have been
computed out to 10th order! [For details, see Quantum Electrodynamics, ed. T.
Kinoshita (World Scientific, Singapore, 1990).]

4.4.1 Mass renormalization

Let us return to the constant term in (4.72) It may be interpreted as a shift in
the mass of the electron,
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where we have recognized that the integral is divergent, and so have regulated
it by inserted a lower limit on the proper time integral, s0 →)+. If I make the
replacement to Euclidean proper time, s→ −is, we see that the integral over s
has the divergent part −lnm2s0. Thus the mass shift is
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which may be interpreted as a mass counterterm.
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4.5 Vacuum Polarization

We now return to the amputated graph shown in Fig. 4.2. According to (4.54)
we write it as
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Here, the trace refers only to the Dirac space. Consider what happens when
Πµν is contracted with kµ. Because γk = m+ γp−m− γ(p− k), we cancel off
one or the other denominator:
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If we are permitted to shift the integration variable in the first term, p→ p+ k,
it is apparent that the two terms here cancel. Although that shift is actually
illegitimate here because the individual integrals are quadratically divergent, we
will actually impose this condition as a constraint in order to define the vacuum
polarization operator:

kµΠµν = 0. (4.82)

This states that the current to which the photon couples is conserved, and is a
signal of gauge invariance. As a consequence, we can write

Πµν = (kµkν − gµνk2)Π(k), (4.83)

and our task is to compute the scalar function Π. That can be done by taking
the trace:
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We can combine the denominators as before:
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where

χ = u[m2 + (p− k)2] + (1 − u)(m2 + p2)

= (p− uk)2 +m2 + k2u(1 − u). (4.86)

The trace over Dirac matrices may be easily worked out using

tr 1 = 4, (4.87a)

tr γµ = 0, (4.87b)

tr γµγν = tr
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4.5. VACUUM POLARIZATION 59 Version of April 18, 2005

Further noting that

γλγpγλ = −2pλγλ − γpγλγλ = −2γp+ 4γp = 2γp, (4.88)

we find for the trace in (4.84)

tr γλ(m− γp)γλ[m+ γ(k − p)] = tr (−4m− 2γp)(m− γ(p− k))

= 4(−4m2 − 2p(p− k)). (4.89)

Now we carry out the required integrals over p, following (4.64):
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So using
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we find
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Now we note that the first two terms in the square bracket appear as
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so integrating by parts on s in this term and omitting the surface term, with is
either a constant or a term linear in k2, we get
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If we return to (4.83) and recall the external propagators, we have in the
action
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so with the change of variable u = (1+v)/2, we have find the following effective
correction to the action,
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We may isolate the divergent term by integrating by parts on v, in which case
the v integral here becomes
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Then including the free Maxwell Lagrangian we find
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where in the first line we have again made the Euclidean substitution, s→ −is,
and in the second carried out the trivial s integration. The first line of W
exhibits an infinite charge and wavefunction renormalization of the Maxwell
action. We can recast the second, vacuum polarization term, in a more physical
spectral form by the change of variables,
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with the result that the photon propagator is modified to
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For application of these results, see the homework.


