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Figure 4.2: Lowest-order vacuum polarization graph
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Figure 4.3: Radiative correction to the propagation of an electron in an external
magnetic field H .

4.4 The Anomalous Magnetic Moment of the

Electron

Here we offer a derivation of the electron’s g− 2 anomaly based on a correction
the the electron propagator in an external magnetic field H. Consider the
process shown in Fig. 4.3. When H = 0 the vacuum persistence amplitude for
this process is given by

(ie)2

2

∫

(dP )

(2π)4
ψ(−P )γ0γµ

∫

(dk)

(2π)4
−i

k2

−i

m+ γ · (P − k)
γµψ(P ). (4.55)

To incorporate the effects of the magnetic field, we make the minimal substitu-
tion, with q being the charge matrix,

P → Π = P − eqA, (4.56)
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so the gauge-covariant momentum satisfies

[Πµ,Πν ] = ieqFµν , (4.57)

in terms of the field strength tensor, assumed here constant. Further, we com-
pute

(γ · Π)2 =
1

2
{γµ, γν}ΠµΠν +

1

2
[γµ, γν ]ΠµΠν

= −Π2 − iσµν i

2
eqFµν

= −Π2 + eqσF, σF =
1

2
σµνFµν = σ · H, (4.58)

for the case of an external magnetic field. The electron propagator then is

1

m+ γ · (Π − k)
=

m− γ · (Π − k)

m2 + (Π − k)2 − eqσF
. (4.59)

It is useful to combine the denominators in an exponential representation.
Write
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(Π − k)2 − eqσF +m2
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ds1 ds2 e
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= −
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∫ 1

0

du e−isχ(u), (4.60)

where we have introduced the proper time s, and the “Feynman” parameter u,

s1 = s(1 − u), s2 = su, (4.61)

where the Jacobian of the transformation is

∂(s1, s2)

∂(s, u)
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= s. (4.62)

The exponential term in (4.60) is

χ(u) = (1 − u)k2 + u[(Π − k)2 − eqσF +m2]

= (k − uΠ)2 + u(1 − u)Π2 + u(m2 − eqσF ). (4.63)

Now we carry out the k integration by a Euclidean rotation,

∫

(dk)

(2π)4
e−isk2

= i

∫

(dk)E

(2π)4
e−isk2

E = −
i

16π2s2
. (4.64)

so then we have here for the basic integral

∫

(dk)

(2π)4
e−isχ(u) = −

i

16π2

1

s2
e−isu2(m2

−eqσF )e−isH, (4.65)
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where

H = u(1 − u)(Π2 +m2 − eqσF ) = u(1 − u)[m2 − (γ · Π)2]. (4.66)

Here, in doing the k integration, we have ignored the noncommutativity of Π,
because this would give rise to a term proportional to [Πµ,Πν ]Fµν ∝ F 2, which
is irrelevant for the magnetic moment term, which is linear in F .

What actually appears in the P → Π generalization of Eq. (4.55) is

e2
∫

(dk)

(2π)2
γµ[m− γ · (Π − k)]e−isχγµ

= e2
∫

(dk)

(2π)4
{[m+ γ · (Π − k)]γµ + 2(Π − k)µ}e−isχγµ. (4.67)

By virtue of the external Dirac field, we can set (on the outside) γ ·Π+m→ 0;
then we can do the k integration by writing it in terms of

∫

(dk)

(2π)4
(k − uΠ)µe−isχ. (4.68)

This would be zero if the Πs were commuting variables, because χ(u) is even in
k − uΠ. Although they are not, we get here something proportional to FµνΠν ,
which is contracted with γµ:

γµF
µνΠν =

i

2
[σF, γ · Π +m] → 0, (4.69)

using (1.154), where again we have ignored the F dependence in χ. So, in the
numerator we may replace kµ by uΠµ. The expression (4.67) is then, to O(F )
is (α = e2/4π)

−
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16π2

1
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[−γ · uΠγµ + 2(1 − u)Πµ] e−isH
(
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)
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1
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m
[

uγµe−isH(1 + isu2eqσF )γµ

− 2(1 − u)e−isH(1 + isu2eqσF )
]

, (4.70)

where we have again used Eq. (4.69). Now we evaluate this by putting the
isu2eqσF term in the exponent:

γµe−is(H−u2eqσF )γµ = γµ
[

e−is[u(1−u)(Π2+m2)](1 + isueqσF )
]

γµ

= −4e−isu(1−u)(Π2+m2) = −4e−isu(1−u)[m2
−(γ·Π)2+eqσF ]

= −4e−isH [1 − isu(1 − u)eqσF ]

→ −4 [1 − isu(1 − u)eqσF ] , (4.71)

where in the second line we have used the fact that γλσαβγλ = 0. Thus we have
from Eq. (4.70),

−
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]

. (4.72)
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The first term here describes a modification of the electron propagator, which
is involved in renormalization of the mass of the electron. The second term is
what is of interest here:

α

2π

m

s
u2(1 − u)e−ism2u2

eqσF. (4.73)

The integrals over the parameters s and u are as follows:

∫ ∞

0

ds s

s

∫ 1

0
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−iǫ) = −
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im2
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0

du (1 − u) =
i

2m2
, (4.74)

and then the vacuum amplitude (4.55) is

i

2

∫

(dx)ψ(x)γ0 eq

2m
σF

α

2π
ψ(x). (4.75)

This is interpreted as a correction to the g-factor of the electron, where g = 2
for a particle described by the Dirac equation:

g − 2

2
=

α

2π
=

1

2π

1

137.036
= 0.0011614, (4.76)

which is to be compared to the experimental value

(

g − 2

2

)

exp

= 0.01159652187(4); (4.77)

the discrepancy is entirely due to higher order QED effects, which have been
computed out to 10th order! [For details, see Quantum Electrodynamics, ed. T.
Kinoshita (World Scientific, Singapore, 1990).]


