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We must be careful here because
0u6J" =0. (4.15)

Thus we have the freedom to add to 6W
m:—/uwxwa@wu% (4.16)

where X is an arbitrary function (Lagrange multiplier). Therefore, we conclude
that

A, (z) = /(dz/)D+($ — ") J, (') + 9\ (z). (4.17)

A represents the gauge freedom of the electromagnetic field. What equation
does A,, satisfy? Since 9, 4" = 9%\,

—0%A,, = J, — 0,0, A", (4.18)

or

0" (0, Ay — 0,A,) = 0 Fpy = J,, (4.19)

so we have recovered the Maxwell equations. Now we can follow the path we
trod for a scalar field:

1 1 1
WI[J]| = 3 /(d:c)J“A# =3 /(d:z:)&,F‘“’A# =1 /(d:c)F‘“’FW, (4.20)
so we deduce the action form,
WMM:/wﬂﬂ@+d, (4.21)

where the Maxwell Lagrange density is

1
L=~ F" Fu. (4.22)

Because 6W = [(dz)dJ*A,,, we conclude that W[J, A] is stationary with respect
to field variations, from which follows the Maxwell equations.

4.2 Spin-1/2

Denote the spin-1/2 (Dirac) source by 7, a four-component object. Is it correct
to write simply (77" is a scalar)

(0210-38 = exp |5 [ (@o)a e o — i) (4.23)
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No, because physically there are only two degrees of freedom for a spin-1/2
particle. Recalling that the rest-frame spinors are eigenvectors of 4° with eigen-
value +1, the restriction to the physical degrees of freedom is accomplished by
inserting the projection operator

1
m =720 = m—p — m(l+1°), (4.24)

where the first replacement occurs in momentum space, and the second in the
rest frame. We take then as our vacuum persistence amplitude

(0410} = exp [; [t e Gt = (129)
where the spin-1/2 Green’s function is
/! 1 /!
Golo =) = (=10, ) Asto =4
i

_ / ((dp) m—p —, (426)

or in momentum space,
Gilp) = ————— (4.27)

But there is something rather strange about this construction. y°G, (x —

x’) is totally antisymmetrical, under interchange of both space-time and Dirac
coordinates:

1 T
(VG (e — )] = {m”yo — 0y 53,2} Ay —x)

= [—mvo - 7%“%(“%)] Ay (z—a')

Gy (x —2). (4.28)

Correspondingly, the 7. (where ( = 1,2, 3,4 is the Dirac index) must be anti-
commuting numbers, that is elements of a Grassmann or exterior algebra:

ne(@)ne (2') = —ner (2" )ne (x). (4.29)

This makes the generating function nonzero:

Wil = [ (o)) S ne(e) 106 o = )] )

¢¢’

_['YOGJr(w/_w)](/g

= [l ) Ynele!) 06— )] o). (430)

¢¢’
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We now may easily verify that the probability requirement is satisfied:
{0+]0-) 1
1 1
exp | Ko [ (@)@ i(e1® (m = 10) A4 = @) (431
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because n¢(x)ne: (2') is imaginary:

(e (@)ne (@) = ner (') ne(x) = ne (@) ne (x)
= —n¢(@)ne (') (4.32)

Further, 4° is imaginary, v#/i is real, and
1 / ~ _ip(z—a’)
Re=A (x —2z') =Re [ dpe’ . (4.33)
i
Acting on the latter is

1 *
m—726—>m—7p:2m2up>\up)\70, (4.34)
A

as we recall from (1.185a). Therefore the probability condition (unitarity) is
satisfied

[OL[0)8* = exp [ =D mpampa| <1, (4.35)
PA
where
px =/ 2m dpujy°n(p). (4.36)

4.2.1 Fields
As before, the field v is defined by

W] = / (dz)5n(2) 4 (z) = / (dr)d (@) ), (4.37)

where the two forms are equal since the antisymmetry of v compensates for
the anticommutativity of dn and . For noninteracting fermions,

Wil = 5 [ (@o)ds (o1 G- (o — (), (439

SO
() = / (d2')G ( — '), (4.39)

B(en® = / (da (&' ) Gn (' — ), (4.39b)



52 Version of April 1, 2006CHAPTER 4. QUANTUM ELECTRODYNAMICS

which follow from the alternative definitions in (4.37) and are directly related
by the total antisymmetry of /°G (x —2’). Because the Dirac Green’s function

satisfies
1
<”y‘“23# + m> Gi(x—2)=m?-0*)A (x —2') =z —2), (4.40)
we see that 1) satisfies the inhomogeneous Dirac equation,

<v“%3u + m) Y =n. (4.41)



