
Chapter 4

Quantum Electrodynamics

4.1 Spin One and the Photon

Let us now turn to spin 1. We expect that the source for a spin-1 particle is a
vector Jµ. However, were we to adopt, as the vacuum persistence amplitude,

〈0+|0−〉
J
0 = exp

[

i

2

∫

(dx)(dx′)Jµ(x)∆+(x − x′)Jµ(x′)

]

, (4.1)

we would have a conflict with unitarity:

|〈0+|0−〉
J
0 |

2 = exp

[

−

∫

(dx)(dx′)Jµ(x)Re
1

i
∆+(x − x′)Jµ(x)

]

= exp

[

−

∫

dp̃Jµ(−p)Jµ(p)

]

≤ 1, (4.2)

which will be true only if
∫

dp̃
[

|J(p)|2 − |J0(p)|2
]

≥ 0. (4.3)

We must therefore suppress the time component of Jµ in a relativistically in-
variant manner. We can do this by use of the timelike vector pµ. That is, in
Jµ∗(p)gµνJν(p) we replace gµν → gµν + pµpν/m2. This does the trick, for in
the rest frame of pµ,

pµ = (m,0) : gµν +
pµpν

m2
=

{

δkl, µ = k, ν = l,
0, otherwise.

(4.4)

So
Jµ(p)∗

(

gµν +
pµpν

m2

)

Jν(p) = |J(p)|2 ≥ 0. (4.5)

The correct vacuum persistence amplitude is then

〈0+|0−〉
J
0 = exp

[

i

2

∫

(dx)(dx′)Jµ(x)∆+µν(x − x′)Jν(x′)

]

, (4.6)
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where

∆+µν(x − x′) =

(

gµν −
∂µ∂ν

m2

)

∆+(x − x′). (4.7)

The projection operator restricts the source to the three physical polarization
states, which we make explicit by writing

gµν +
pµpν

m2
=

3
∑

λ=1

eµ,pλe∗ν,pλ, (4.8)

where the polarization vectors satisfy

pµeµ,pλ = 0, eµ
pλeµ,pλ′ = δλλ′ . (4.9)

The photon, however, is a massless particle. We can obtain the appropri-
ate vacuum amplitude expression by a suitable careful limit. Let ∂µJµ(x) =
m2K(x). Then

〈0+|0−〉 = exp

[

i

2

∫

(dx)(dx′)
(

Jµ(x)∆+(x − x′)Jµ(x′)

+ K(x)∆+(x − x′)K(x′)
)

]

, (4.10)

amd now take the massless limit, m → 0:

lim
m→0

∆+(x − x′) = D+(x − x′) =

∫

(dk)

(2π)4
eik(x−x′)

k2 − iǫ
, (4.11)

and ∂µJµ = 0. The three degrees of freedom of the massive vector become the
two degrees of freedom of the massless vector, and the one degree of freedom of
an independent, uncoupled, massless scalar. We may disregard the latter. So
the vacuum persistence amplitude for a photon is

〈0+|0−〉
J,m=0
0 = exp

[

i

2

∫

(dx)(dx′)Jµ(x)D+(x − x′)Jµ(x′)

]

, (4.12)

where ∂µJµ = 0. This guarantees |〈0+|0−〉
J |2 ≤ 0, as you will show in the

homework. We see here the requirement of current conservation – a photon
must couple to a conserved charge.

If we call for the photon

W [J ] =
1

2

∫

(dx)(dx′)Jµ(x)D+(x − x′)Jµ(x′), (4.13)

we define the (vector potential) field by

δW [J ] =

∫

(dx)δJµ(x)Aµ(x). (4.14)
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We must be careful here because

∂µδJµ = 0. (4.15)

Thus we have the freedom to add to δW

0 = −

∫

(dx)λ(x)∂µδJµ(x), (4.16)

where λ is an arbitrary function (Lagrange multiplier). Therefore, we conclude
that

Aµ(x) =

∫

(dx′)D+(x − x′)Jµ(x′) + ∂µλ(x). (4.17)

λ represents the gauge freedom of the electromagnetic field. What equation
does Aµ satisfy? Since ∂µAµ = ∂2λ,

−∂2Aµ = Jµ − ∂µ∂νAν , (4.18)

or
∂ν(∂µAν − ∂νAµ) = ∂νFµν = Jµ, (4.19)

so we have recovered the Maxwell equations. Now we can follow the path we
trod for a scalar field:

W [J ] =
1

2

∫

(dx)JµAµ =
1

2

∫

(dx)∂νFµνAµ =
1

4

∫

(dx)FµνFµν , (4.20)

so we deduce the action form,

W [J, A] =

∫

(dx) [JµAµ + L] , (4.21)

where the Maxwell Lagrange density is

L = −
1

4
FµνFµν . (4.22)

Because δW =
∫

(dx)δJµAµ, we conclude that W [J, A] is stationary with respect
to field variations, from which follows the Maxwell equations.


