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3.4 Example: Two-Point Function

The lowest-order graphs contributing to the two-point function are shown in
Fig. 3.3. These graphs are immediately translated into the following expressions:
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+ +
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Figure 3.3: Graphs contributing to the two-point Green’s function through
O(λ2).
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Note that we can sum the subset of graphs that consist of iterations of a
single bubble, as shown in Fig. 3.4. If we define the “mass operator” or “self-
energy part” as the one-loop graph with the external propagators removed, or
“amputated,”
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the sum of the graphs indicated in Fig. 3.4 is
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G′(p) = + + + + . . .

Figure 3.4: Iterated one-loop contribution to the “vacuum polarization,” leading
to the one-loop “self energy.”
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due to the geometric series,
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valid if y/x < 1. (Here this is formally satisfied, since we are assuming that λ is
small.) Here we see that because in this case Σ is constant, it indeed amounts
to a shift in the mass, hence the name.

However, we notice that Σ is divergent: If we pass to Euclidean space, as in
Problem 4.3, and introduce polar coordinates, (dl)E = dΩ l3dl, where Ω is the
volume of a unit 4-sphere, the Euclidean form of Σ is
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Here, we have inserted an ultraviolet momentum cutoff Λ. As Λ → ∞, the
integral is quadratically divergent.

If we include the third graph in Fig. 3.3, the so-called “sunset” graph, the
self-energy part acquires momentum dependence:

Σ(p) = A + Bp2, (3.43)

where A is quadratically divergent, A ∼ Λ2, and B is logarithmically divergent,
B ∼ ln Λ2/m2. (There remains finite p2 dependence.) Such a contribution not
only changes the location of the pole (by an infinite amount), but changes its
residue as well:
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Figure 3.5: Graphs through order λ2 contributing to the four-point function. In
addition, there are propagator corrections to the external lines.

3.5 Renormalization Theory

The four-point function also contains divergences. The graphs, through second
order, are shown in Fig. 3.5. Here, for example, the second graph is, if we
amputate the external legs,
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By power counting, it is clear that this is logarithmically divergent:

∼
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Comparing with the lowest order graph, −iλ, we see that this results in an
infinite shift in the coupling constant. These shifts in the parameters of the
theory we call renormalization. What makes this sensible is that there are only
three infinite constants in the theory, which may be taken to be

• m0, the bare mass,

• λ0, the bare coupling constant,

• Z, the wavefunction renormalization constant.

The Lagrangian, then, may be expressed either in terms of bare quantities,
including the bare field φ0,
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or in terms of renormalizable ones
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φ4 + Lct, (3.48)

where m and λ are the renormalized (“physical”) mass and coupling constants,
respectively, and the “counterterm” Lagrangian is

Lct = −
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4!
φ4, (3.49)

where C, δm, and δλ may be expressed as power series in λ, with divergent
coefficients. Note that only structures present in the original Lagrangian appear

in Lct. This is what we mean by a renormalizable theory;—A nonrenormalizable
theory would require the introduction of an infinite number of counterterms,
with structures that do not appear in L0. By comparing the two forms of L

above we see

φ0 = (1 + C)1/2φ ≡ Z1/2φ, (3.50a)

m2
0Z = m2 + δm2, (3.50b)

λ0Z
2 = λ + δλ, (3.50c)

or

Z = 1 + C, (3.51a)

m2
0 = (m2 + δm2)Z−1, (3.51b)

λ0 = (λ + δλ)Z−2. (3.51c)

As we’ve seen above,

λ0 = λ + O(λ2), (3.52a)
m0

m
= 1 + O(λ), (3.52b)

Z = 1 + O(λ2), (3.52c)

where the last comes from the sunset graph in Fig. 3.3.

All infinities in the theory can be absorbed in λ0, m0, and Z; and finite,
renormalized Green’s functions are given by

G(n)(p1, . . . , pn; λ, m) = Z−n/2G
(n)
0 (p1, . . . , pn; λ0, m0). (3.53)

Let us see how this works through second order. By making the coupling
constant explicit, we have for the bare two-point function,
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up to finite corrections, while the renormalized Green’s function (to this order)
is simply
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the latter term, in terms of a spectral density a(M2), expressing a branch line
starting at the three-particle threshold, we conclude that

Z = 1 + λ2B + O(λ3), (3.56)

using (3.52a). Then from
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Now the bare four-point function is
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so the renormalized four-point function is
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Here we have introduced the so-called Mandelstam variables,

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2. (3.61)

Therefore,
Z2λ0(1 + λD) = λ, (3.62)

or
Z2λ0 = λ(1 − λD) = λ + δλ. (3.63)

Thus we have expressed the counterterms in terms of power series in the renor-
malized coupling constant, with infinite coefficients:

Z = 1 + λ2B, (3.64a)

δλ = −λ2D, (3.64b)

δm2 = λA1 + λ2(A2 − DA1). (3.64c)


