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just as advertized.
This “gauging” procedure leads to the minimal interaction between electron

and photon, but there can be further interactions, as long as they are gauge
invariant. The anomalous magnetic moment term

W ′ = −
κ

2

∫

(dx)ψσµνFµνψ (2.44)

is gauge invariant by itself, because F appears and no derivatives act on ψ. This
adds to the Dirac equation the term

1

2
κσµνFµνψ = κΣ · Hψ (2.45)

for a pure magnetic field. If such an extra term were present, the net magnetic
moment would be [see (1.39)]

µ =
( e

2m
+ κ

)

Σ =
e

2m

g

2
Σ, (2.46)

which is to say

κ =
e

2m

(

g − 2

2

)

. (2.47)

However, experimentally, for the electron, g is very nearly 2:

ge

2
= 1.001159652187(4), (2.48)

and similarly for the muon:

gµ

2
= 1.0011659160(6). (2.49)

Does this mean that a small κ value should be inserted ad hoc? No! We will
calculate g from QED. The nearness of g = 2 for the electron apparently means
that the Dirac equation is an appropriate starting point. A third-rank spinor
description of spin-1/2, for example, gives g = 2/3.

2.2 Energy-Momentum Tensor

Let us consider how fields transform under four-dimensional (space-time) coor-
dinate transformations. Consider, first, a scalar field:

xµ = xµ
− δxµ : φ(x) = φ(x), (2.50)

That is, the value of the field at the same physical point is unchanged by the
change of coordinates. Therefore,

φ(x) = φ(x) − δφ(x) = φ(x + δx) = φ(x) + ∂µφ(x)δxµ, (2.51)
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or
δφ(x) = −δxµ∂µφ(x). (2.52)

The action for a free scalar field is

W0 = −
1

2

∫

(dx)
(

∂µφ(x)∂µφ(x) +m2φ2
)

=

∫

(dx)L0. (2.53)

By varying this with respect to φ we recover the Klein-Gordon equation:

(−∂2 +m2)φ = 0. (2.54)

Now, under the above coordinate transformation

δL0 = −
(

∂µφ∂µδφ+m2φ δφ
)

= −∂µφ∂µ

(

−δxλ∂λφ
)

−m2φ
(

−δxλ∂λφ
)

= δxλ∂λ

1

2

(

∂µφ∂µφ+m2φ2
)

+ (∂µδx
λ)∂λφ∂

µφ

= −∂λ

(

δxλ
L0

)

+ ∂µδxν (∂µφ∂νφ+ gµν
L0) . (2.55)

For free fields, by the stationary action principle,

δW0 =

∫

(dx)δL0 = 0, (2.56)

so omitting surface terms as usual, we infer

δW0 =

∫

(dx)∂µδxνt
µν
0

= 0, (2.57)

where the energy-momentum or stress tensor is here

tµν
0

= ∂µφ∂νφ+ gµν
L0. (2.58)

Note that the change in the action (2.57) would be identically zero if δxν were
constant, i.e., for a translation. In general, the requirement of the stationary
action principle (2.57) implies that this stress tensor is conserved,

∂µt
µν
0

= 0. (2.59)

This result also follows directly by using the Klein-Gordon equation. Note that
tµν
0

= tνµ
0

, that is, that the stress tensor is symmetrical in its indices.
If one integrates t0µ over all space, one obtains the four-momentum:

Pµ =

∫

(dx) t0µ, (2.60)

and the conservation statement (2.59) says that this is a constant of the motion:

Ṗµ = 0. (2.61)
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Thus the conclusion is that invariance under space-time displacements (where
δxµ = constant) implies the conservation of energy and momentum.

What about a vector field, like the photon field (four-vector potential)?
Since the latter possesses gauge invariance, we should be able to model the
transformation properties under coordinate redefinitions by examining how a
gradient of a scalar field transforms, according to (2.52):

∂µδφ = δ(∂µφ) = −δxν∂ν∂µφ− (∂µδx
ν)∂νφ. (2.62)

We will take this to be the rule by which a vector field transforms:

δAµ = −δxν∂νAµ − (∂µδx
ν)Aν . (2.63)

Let us check this by considering a Lorentz transformation (1.147), where

δxν = δωµνxµ. (2.64)

Then (2.63) says that

δAµ = −δωλνxλ∂νAµ − δωµνA
ν . (2.65)

Indeed, under a Lorentz transformation,

A
µ
(x) = A

µ
(xλ

− δωαλxα) = Aµ(x) − δωνµAν(x)

= Aµ(x) − δAµ(x) − ∂λA
µδωαλxα, (2.66)

from which we deduce

δAµ = δωνµAν − δωαλxα∂λA
µ, (2.67)

which coincides with (2.65).
Now consider the variation in the Maxwell Lagrange density, L1 = −

1

4
FµνFµν :

δL1 = −
1

2
Fµν2∂µδAν = Fµν∂µ

[

δxλ∂λAν + (∂νδx
λ)Aλ

]

= −δxλ∂λ

(

−
1

4
FµνFµν

)

+ Fµν
(

∂µδx
λ
)

∂λAν + Fµν∂µAλ∂νδx
λ

= −∂λ

(

−δxλ 1

4
FµνFµν

)

+ ∂µδxν

[

gµν
L1 + Fµλ∂νAλ + Fλµ∂λA

ν
]

= −∂λ(δxλ
L) + (∂µδxν)tµν

1
, (2.68)

where the energy-momentum tensor now is

tµν
1

= FµλF ν
λ + gµν

L1, (2.69)

which is again symmetric,

tµν
1

= tνµ
1
, (2.70)
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and by the action principle, is conserved,

∂µt
µν
1

= 0, (2.71)

again entailing the conservation of energy and momentum.
It is of some significance that the Maxwell stress tensor is traceless,

t1 = tλ
1λ = FαβFαβ + 4

(

−
1

4

)

FαβFαβ = 0. (2.72)

This reflects the scale invariance of the theory. A scale transformation is a
particular kind of coordinate transformation

δxµ = δa xµ, (2.73)

under which

δW =

∫

(dx)tµν
1
∂µδxν =

∫

(dx)tµν
1

(δa gµν + xν∂µδa) . (2.74)

Given that t = 0, this indeed vanishes if δa = constant, and generally, by the
action principle, we have a new conserved current,

∂µc
µ = 0, cµ = xνt

µν
1
, (2.75)

the latter being called the scale current.
Spin one-half will be treated in the homework.


