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We have the appropriate current already in (1.27a) and (1.27b):

ρ = eψ†ψ, j = eψ†γ0
γψ, (2.17)

or in four-vector notation

jµ = eψ†γ0γµψ. (2.18)

Let us verify that this indeed transforms as a four-vector:

jµ
→ eψ†

(

1−
i

4
σαβ†δωαβ

)

γ0γµ

(

1 +
i

4
σαβδωαβ

)

ψ. (2.19)

Here because γ0† = γ0, γ
† = −γ,

σij† = σij , σ0i† = −σ0i. (2.20)

But also

σijγ0 = γ0σij , σ0iγ0 = −γ0σ0i, (2.21)

so

σαβ†γ0 = γ0σαβ , (2.22)

which is to say that γ0σαβ is Hermitian. Thus, under a Lorentz transformation

jµ
→ jµ

−

ie

4
ψ†γ0[σαβ , γµ]ψδωαβ

= jµ + eψ†γ0γβψδω
µβ

jµ + δωµνjν , (2.23)

which uses (1.154),

[σαβ , γµ] = 2i(gαµγβ
− gβµγα) (2.24)

2.1 Action Principles

The conservation of electric charge, like all conservation laws, reflects an un-
derlying symmetry. To discuss this, we need the Dirac and Maxwell actions.
Define the functionals

WD[ψ, ψ] = −

∫

(dx)ψ

(

γ
1

i
∂ +m

)

ψ, (2.25a)

WM [A] =

∫

(dx)

(

−

1

4

)

FµνFµν , (2.25b)

where integration is assumed over all space-time, with measure (dx) = dt (dx),
and where

ψ = ψ†γ0, Fµν = ∂µAν
− ∂νAµ. (2.26)
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We regard ψ, ψ, and A as independent variables, and vary the action with
respect to each in turn:

δWD = −

∫

(dx)

[

δψ

(

γ
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i
∂ +m

)

ψ + ψ

(

γ
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i
∂ +m

)

δψ

]

= −

∫

(dx)

[

δψ

(

γ
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i
∂ +m

)

ψ + ψ

(

−γ
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i

←−

∂ +m

)

δψ

]

, (2.27)

where, in the last, we have integrated by parts, and omitted surface terms. The
notation means

ψ
←−

∂ µ = ∂µψ. (2.28)

Similarly,

δWM = −

∫

(dx)Fµν∂µδAν =

∫

(dx)∂µF
µνδAν . (2.29)

Now we impose the Stationary Action Principle: δW = 0. This is to say that
the “true path” is an extremum. The equations of motion follow:

(

γ
1

i
∂ +m

)

ψ = 0, ψ

(

−γ
1

i

←−

∂ +m

)

= 0, (2.30a)

∂µF
µν = 0. (2.30b)

These are the free Dirac and Maxwell equations. Note that the two forms of
the Dirac equation are equivalent because γ0γµ is Hermitian.

Now the Maxwell action is invariant under the gauge transformations,

Aµ → Aµ + ∂µλ, (2.31)

while the Dirac action is invariant under the global (constant) phase transfor-
mation

ψ → eiΛψ, ψ → e−iΛψ, (2.32)

where Λ is a constant number. What if Λ is not constant? Then the Dirac
action changes:

δWD = −

∫

(dx)ψe−iΛγµ 1

i
(∂µe

iΛ)ψ

= −

∫

(dx) ∂µΛψγµψ. (2.33)

Since δWD is stationary for arbitrary infinitesimal variations about solutions of
the equations of motion, we conclude that, because Λ is an arbitrary function,

∂µψγ
µψ = 0, (2.34)

which of course can be directly proved from the equations of motion, as we did
in Chapter 1, in Eq. (1.26). Equation (2.34) is just the statement of (electric)
current conservation (2.15).
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But let us go one step further and require that the action be identically

invariant under local Λ(x) transformations. We will need to add some term
Wint to WD and WM such that

δWint = +

∫

(dx) ∂µΛψγµψ. (2.35)

This will be the case if

Wint = e

∫

(dx)Aµψγ
µψ, (2.36)

where δAµ = ∂µλ, and we have identified the gauge and phase transformation
parameters,

λ =
1

e
Λ, (2.37)

where e is the arbitrary charge of the electron. We have united two independent
symmetries, gauge transformations on Maxwell fields and global phase trans-
formations on Dirac fields, which apply for free fields, into a single local gauge
transformation symmetry of interacting electron and photon fields:

Aµ → Aµ + ∂µλ, (2.38a)

ψ → eieλψ, ψ → ψe−ieλ. (2.38b)

The action which is invariant under these transformations is

W = −

∫

(dx)

{

ψ

[

γµ

(

1

i
∂µ − eAµ

)

+m

]

ψ +
1

4
FµνFµν

}

. (2.39)

We see the appearance of the gauge-covariant derivative,

Dµ = ∂µ − ieAµ, (2.40a)

which we had seen earlier as the gauge-covariant momentum operator (1.31)

πµ =
1

i
∂µ − eAµ. (2.40b)

πµ satisfies the commutation relation

[πµ, πν ] = ie(∂µAν − ∂νAµ) = ieFµν . (2.41)

By gauge covariant, we mean, under a gauge transformation,

Dµ → e−ieλ(Dµ − ie∂µλ)e
ieλ = Dµ. (2.42)

The resulting Dirac and Maxwell equations are

(γπ +m)ψ = 0, π = p− eA, (2.43a)

∂νF
µν = jµ, jµ = eψγµψ, (2.43b)
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just as advertized.
This “gauging” procedure leads to the minimal interaction between electron

and photon, but there can be further interactions, as long as they are gauge
invariant. The anomalous magnetic moment term

W ′ = −
κ

2

∫

(dx)ψσµνFµνψ (2.44)

is gauge invariant by itself, because F appears and no derivatives act on ψ. This
adds to the Dirac equation the term

1

2
κσµνFµνψ = κΣ ·Hψ (2.45)

for a pure magnetic field. If such an extra term were present, the net magnetic
moment would be [see (1.39)

µ =
( e

2m
+ κ

)

Σ =
e

2m

g

2
Σ, (2.46)

which is to say

κ =
e

2m

(

g − 2

2

)

. (2.47)

However, experimentally, for the electron, g is very nearly 2:

ge

2
= 1.001159652187(4), (2.48)

and similarly for the muon:

gµ

2
= 1.0011659160(6). (2.49)

Does this mean that a small κ value should be inserted ad hoc? No! We will
calculate g from QED. The nearness of g = 2 for the electron apparently means
that the Dirac equation is an appropriate starting point. A third-rank spinor
description of spin-1/2, for example, gives g = 2/3.


