SUSY, UED, LHT at the LHC

Howard Baer Florida State/ University of Oklahoma

- \star SUSY at LHC
 - SUSY signatures
 - SM backgrounds
 - cuts: optimizing signal/BG
 - LHC reach for SUSY
 - beyond discovery:
 - * precision measurements
- ★ UED at LHC
- ★ LHT at LHC

SUSY signatures at LHC

- \star $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$ production dominant for $m \stackrel{<}{\sim} 1$ TeV
- \star lengthy cascade decays of \tilde{g} \tilde{q} are likely
- * events characterized by multiple hard jets, isolated and non-isolated leptons es and μ s, and $\not\!\!\!E_T$ from \widetilde{Z}_1 or \widetilde{G} or ν s escaping
- ***** many jets are b (displaced vertices due to long B lifetime) and τ (1 or 3 charged prongs) jets
- \star one way to classify signatures is according to number of isolated leptons

Classify event topologies according to isolated leptons

- $E_T + jets$
- $opposite sign (OS) \ 2\ell + \not\!\!\! E_T + \mathsf{jets}$
- $same sign (SS)2\ell + \not\!\!E_T + jets$

Backgrounds to SUSY events at LHC

 \star numerous SM processes give same signature as SUSY!

- ★ SM BGs include:
 - QCD: multi-jet qq, $q\bar{q}$, qg, gg production where \not{E}_T comes from mis-measurement, cracks, etc.
 - $t\bar{t}$, $b\bar{b}$, $c\bar{c}$
 - W or Z+ multi-jet production
 - -~WW , WZ , ZZ production, where $Z \rightarrow \nu \bar{\nu}$ or $\tau \bar{\tau}$
 - * all of above embedded in Isajet, Pythia, Herwig
 - four particle processes: *e.g.* $t\bar{t}t\bar{t}$, ttbb, etc.
 - -WWW, etc.
 - $\ast\,$ the $2 \rightarrow n$ for n>2 processes usually need CalcHEP/Madgraph
 - overlapping events; fake b-jets; fake leptons, etc

Background issues

 \star The BGs must be estimated using full event simulation

- jet broadening, interaction of particles with detectors
- \star Must also simulate *detector*: GEANT or toy or...
- **\star** If possible, use complete $2 \rightarrow n$ -body matrix elements
- ★ matching of PS and HO-ME results? avoid double counting
 VECBOS, AlpGEN, MCNLO , etc.
- ★ NLO QCD corrections?
- \star matching the data: how well do we know SM BG rates?
- \star first order of business at LHC: re-discover the SM!
 - calibrate detectors using Z+jets, W+jets, $t\bar{t}$ production

Example: calculate SUSY reach of LHC for 10, 100 fb $^{-1}$

- \star Cuts and pre-cuts:
- ★ $N_j \ge 2$ (where $p_T(jet) > 40$ GeV and $|\eta(jet)| < 3$
- \star Grid of cuts for optimized S/B:
 - $-N_j \ge 2 10$

 - $E_T(j1) > 40 1000 \text{ GeV}$
 - $E_T(j2) > 40 500 \text{ GeV}$
 - $-S_T > 0 0.2$
 - muon isolation
- $\bigstar~S>10$ events for $100~{\rm fb^{-1}}$
- $\bigstar S > 5\sqrt{B}$ for optimal set of cuts

Sparticle reach of LHC for 100⁻¹ **fb**

HB, Balazs, Belyaev, Krupovnickas, Tata: JHEP 0306, 054 (2003)

Old sparticle reach of LHC for 10^{-1} fb incl. 2ℓ and 3ℓ

HB, Chen, Paige, Tata: PRD53, 6241 (1996)

Sparticle reach of LHC for 10^{-1} fb; RPV with $\widetilde{Z}_1 \rightarrow cds$

HB, Chen, Paige, Tata: PRD55, 1466 (1997)

Sparticle reach of CMS; various $\int \mathcal{L}dt$

Sparticle reach in AMSB model

Sparticle reach in GMSB model: various model lines

Model	NLSP	Tevatron	LHC
Line		$(25 \ fb^{-1})$	$(10 \ fb^{-1})$
Α	$\tilde{Z}_1 \sim \tilde{B}$	$\Lambda\cong 115{\rm TeV}$,	$\Lambda \cong 400 \text{ TeV}$
	$\tilde{Z}_1 \to \gamma \tilde{G}$	$m_{{ ilde g}/{ ilde q}}\sim 0.87$ TeV,	$m_{{ ilde g}/{ ilde q}}\sim 2.8{ m TeV}$,
		$ll\gamma\gamma + E_T^{miss}$	$\gamma\gamma + E_T^{\mathrm{miss}}$
В	$ ilde{ au}_1$	$\Lambda\cong 53{\rm TeV}$,	$\Lambda \cong 150 \text{ TeV}$
		$m_{{{ ilde g}}/{{ ilde q}}}\sim 0.82$ TeV,	$m_{{ ilde g}/{ ilde q}}\sim 2.0{ m TeV}$,
		Clean channels	$3l + E_T^{\text{miss}}$
		$3l + 1\tau 2l + 1\tau 3l$	
		$+2\tau 1l + 3\tau 2l$	

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

Sparticle reach of colliders plus DM DD/IDD

Reach of Atlas for SUSY Higgs: 300 fb⁻¹

Early SUSY discovery at LHC with just 0.1 fb⁻¹?

- - dead regions
 - "hot" cells
 - cosmic rays
 - calorimeter mis-measurement
 - beam-gas events
- Can we make early discovery of SUSY at LHC without $\not\!\!\!E_T$?
- Expect SUSY events to be rich in jets, b-jets, isolated ℓ s, τ -jets,....
- These are *detectable*, rather than inferred objects
- Answer: YES! See HB, Prosper, Summy, arXiv:0801.3799

D0 saga with missing E_T

Require simple cuts: plot jet multiplicity

• \geq 4-jets $E_T > 100, 50, 50, 50$ GeV; $S_T \geq 0.2$

Simple cuts: lepton multiplicity

Cuts C1' plus $\geq 2 OS/SF \ell$

Precision measurements at LHC

- $M_{eff} = E_T + E_T(j1) + \cdots + E_T(j4)$ sets overall $m_{\tilde{g}}, m_{\tilde{q}}$ scale
- $m(\ell \bar{\ell}) < m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ mass edge
- $m(\ell \bar{\ell})$ distribution shape
- combine $m(\ell \bar{\ell})$ with jets to gain $m(\ell \bar{\ell} j)$ mass edge: info on $m_{\tilde{q}}$
- further mass edges possible e.g. $m(\ell \bar{\ell} j j)$
- Higgs mass bump $h \to b\bar{b}$ likely visible in $\not\!\!E_T + jets$ events
- in favorable cases, may overconstrain system for a given model
- ★ methodology very p-space dependent
- \star some regions are very difficult *e.g.* HB/FP

Paige, Hinchliffe *et al.* case studies:

- examined many model case studies in mSUGRA, GMSB, high $an \beta...$
- classic study: pt.5 of PRD55, 5520 (1997) and PRD62, 015009 (2000)
- $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu) = (100, 300, 0, 2, 1)$ in GeV
- dominant $\tilde{g}\tilde{g}$ production with $\tilde{g} \to q\tilde{q}_L \to qq\tilde{Z}_2 \to q_1q_2\ell_1\tilde{\ell} \to q_1q_2\ell_1\ell_2\tilde{Z}_1$ (string of 2-body decays)
- can reconstruct 4 mass edges; allows one to fit four masses: $m_{\tilde{q}_L}, \ m_{\tilde{Z}_2}, \ m_{\tilde{\ell}}, \ m_{\tilde{Z}_1}$ to 3 - 12%
- $\bullet\,$ can also find Higgs h in the SUSY cascade decay events
- if enough sparticle masses measured, can fit to MSSM/SUGRA parameters

• rough estimate of $m_{\tilde{g}}, m_{\tilde{q}}$ can be gained from max of M_{eff}

Howie Baer, TASI 2008: SUSY, UED, LHT at LHC, June 19, 2008

$m(\ell^+\ell^-)$ mass edge from $\widetilde{Z}_2 \to \ell^+\ell^-\widetilde{Z}_1$

• kinematically, $m(\ell^+\ell^-) < m_{\widetilde{Z}_2} - m_{\widetilde{Z}_1}$

• for
$$\widetilde{Z}_2 \to \widetilde{\ell}^+ \ell^- \to (\ell^+ \widetilde{Z}_1) \ell^-$$
, have
 $m(\ell^+ \ell^-) < m_{\widetilde{Z}_2} \sqrt{1 - \frac{m_{\widetilde{\ell}}^2}{m_{\widetilde{Z}_2}^2}} \sqrt{1 - \frac{m_{\widetilde{Z}_1}^2}{m_{\widetilde{\ell}}^2}} < m_{\widetilde{Z}_2} - m_{\widetilde{Z}_1}$

Howie Baer, TASI 2008: SUSY, UED, LHT at LHC, June 19, 2008

Howie Baer, TASI 2008: SUSY, UED, LHT at LHC, June 19, 2008

$m(b\overline{b})$ Higgs mass bump in SUSY jets $+ \not\!\!E_T$ events

Case study of SUSY in the focus point region of mSUGRA

HB/FP Sparticle Masses

- $m_0 \sim 3$ TeV so squarks/sleptons decouple
- $m_{\tilde{q}} \sim 1$ TeV and $\mu \sim 226$ GeV so W_1, Z_2 light
- SUSY production: soft $(\widetilde{W}_1^+ \widetilde{W}^-, \widetilde{W}^\pm \widetilde{Z}_2)$ and hard $(\widetilde{g}\widetilde{g})$ component

HB, Barger, Shaughnessy, Summy and Wang

FP case study: cross sections

HB/FP Cross Sections 10000 $\begin{array}{c} \widetilde{W}_1 \widetilde{Z}_1 \\ \widetilde{W}_1 \widetilde{Z}_2 \\ \widetilde{W}_1 \widetilde{Z}_3 \end{array}$ 100 $\tilde{W}_{i}\tilde{W}_{j}$ $\tilde{W}_1 \tilde{W}_1$ σ (fb) $\tilde{Z}_{1}\tilde{Z}_{2}$ $\tilde{Z}_{2}\tilde{Z}_{2}$ $\tilde{Z}_{2}\tilde{Z}_{3}$ $\tilde{Z}_{1}\tilde{Z}_{3}$ gg $\tilde{Z}_1 \tilde{Z}_2$ 0.01 $\tilde{Z}_2 \tilde{Z}_2$ 0.0001 $m_{\tilde{g}}^{1500}$ (GeV) 1000 2000

Apply cuts set C1

- $n_j \ge 4$; $S_T > 0.2$
- $E_T(j1, j2, j3, j4) > 100, 50, 50, 50 \text{ GeV}$

n(jets) distribution

n(b - jets) distribution

n(leptons) (isolated) distribution

Augmented effective mass A_T

- $n(jets) \ge 7$
- $n(b jets) \ge 2$

Remaining signal vs. $m_{\tilde{g}}$

- $n(jets) \ge 7$; $n(b jets) \ge 2$; $A_T > 1400 \text{ GeV}$
- signal way above BG; purely from $\tilde{g}\tilde{g}$ production
- extract $m_{\tilde{g}}$ from total rate to $\sim 8\%$

Same flavor/opposite sign dilepton mass distribution

- cuts C1; $n(leps) \ge 2$; $n(jets) \ge 4$; $n(b jets) \ge 2$; $A_T > 1200$ GeV
- two mass edges stand out

Some aspects of Kaluza-Klein theory

★ Write down Lagrangian, but in 5 space-time dimensions

- ★ Unify gravity plus E&M?
- ★ Compactification on manifold (circle) leads to zero modes plus KK-excitations with mass $m = \sqrt{m_0^2 + n^2/R^2}$ where R is compacification radius
 - get 2 KK excited states for each \boldsymbol{n} value
 - excitations have same spin, couplings, charges as zero modes- just higher masses
- \star instead, compactify on orbifold, e.g. S^1/Z_2
- ★ virtues of orbifolding:
 - reduction in # of KK excitations: no $Z_2\text{-odd}$ modes
 - project out unwanted zero modes
 - can break symmetries of D-dimensional theory zero modes: alternative symmetry breaking mechanism to spontaneous SB

Universal Extra Dimensions (UED)

- ★ Write down SM action in 5-d
- \star expand SM fields in terms of Z_2 odd/even functions
- \star Compactify on S_1/Z_2 orbifold with radius R
- ★ Orbifolding eliminates "wrong helicity" SM zero modes to give chiral SM as zero mode theory
- \star A_{μ} has zero mode; A_4 does not
- ★ low energy theory is SM zero modes
- \bigstar also get KK excitations starting at $m\sim 1/R$
- \star KK-parity conserved: get DM candidate LKP
- ★ spectrum: Q^1 , u^1 , d^1 , L^1 , e^1 , $W^{1\pm}$, Z^1 , g^1 , B^1 , H^0 , A^0 , H^{\pm}

Universal Extra Dimensions (UED)

- tree level mass spectra nearly degenerate:
- radiative corrections give some splitting (Cheng, Matchev, Schmaltz)

LHC reach for UED theories in $4\ell + \not\!\!E_T$ channel

• $pp \to Z_1 Z_1 \to L_1 \overline{\ell} L_1 \overline{\ell} \to 4\ell + \not\!\!\!E_T$, etc.

Little Higgs theories

- for expert advice, see our TASI organizer, Prof. Tao Han!
- New approach to EWSB: Arkani-Hamed, Cohen, Georgi, 2001
- Higgs field arises as pseudo-Nambu-Goldstone boson from "collective" symmetry breaking
- Symmetry \Rightarrow quadratic divergences to m_H^2 cancel at 1-loop (2-loop and higher quad. divergences remain)
- Natural cut-off of theory is $\sim 10~{\rm TeV}$ to avoid "little hierarchy problem"
- All LH theories predict new particles at 1-10 TeV scale
 - new gauge bosons A_H , W^{\pm}_H , W^0_H to cancel gauge boson loops in m^2_H
 - new top partner fermions T to cancel top loop in m_H^2
 - new scalars to cancel Higgs self coupling loops
- precise details model-dependent: most popular: littlest Higgs with SU(5)/SO(5)

Spectrum from Little Higgs theories

T-parity in Little Higgs theories (LHT)

- It was found that LH models tend to give large corrections to precision EW observables unless $m_{LH} \rightarrow 10$ TeV
- This re-introduces fine-tunings in Higgs sector
- EWPOs can be saved by introducing *T*-parity (Cheng and Low)
 - SM particles: t-even
 - new GBs, scalars, some top-partners: t-odd
 - $-\,$ then contributions to EWPOs only occur at loop level
 - can allow much lighter new particle states
- *t*-odd particles produced in pairs
- *t*odd particles decay to other *t*-odd states
- Lightest *t*-odd particle absolutely stable: DM candidate, usually A_H (but see Hill+Hill anomalies paper)

LHT models at LHC

- main search channel: $pp \to T\bar{T}$ with $T \to tA_H$
- see Cheng, Low and Wang, PRD74, 055001 (2006)
- Matsumoto, Nojiri, Nomura, PRD75, 055006 (2007)
- Belyaev, Chen, Tobe and Yuan, PRD74, 115020 (2006)
- Carena, Hubisz, Perelstein, Verdier, PRD75, 091701 (2007)
- Han, Mahbubani, Walker, Wang, arXiv:0803.3820 (2008)

 $T\bar{T}$ production at LHC

• Han, Mahbubani, Walker, Wang, arXiv:0803.3820 (2008)

- Han, Mahbubani, Walker, Wang, arXiv:0803.3820 (2008)
- significance after cuts with 100 fb $^{-1}$ at LHC

Conclusions

- \star SUSY at LHC
 - event signatures
 - backgrounds
 - reach
 - precision measurements
- ★ UED at LHC
- ★ LHT at LHC
- ★ We now have a good idea of what E_T signatures will look like at the LHC for a variety of models
- ★ in 2008, the road to discovery begins at the LHC: time to either discover or rule out models such as SUSY, UED, LHT at the weak scale, and resolve the physics behind electroweak symmetry breaking!