Collider signals II: $\not\!\! E_T$ signatures including SUSY, Tp, KKp and dark matter connection

Howard Baer

Florida State University / University of Oklahoma

- ★ Lecture 1: some SUSY basics
 - SUSY spectra demos
- ★ Lecture 2: Sparticle production, decay, event generation
 - SUSY LHC events demo
- ★ Lecture 3: SUSY models and DM connection
- ★ Lecture 4: SUSY, UED and LHT at LHC

First: why have a special set of 4 lectures on \mathbb{Z}_T at LHC?

- \star $\not\!\!E_T$ is one of the main signals for new physics to be searched for at the LHC
- ★ Main motivation nowadays: dark matter
 - vast array of astrophysical data show we most likely live in a ΛCDM universe!
 - * baryons: $\sim 4\%$
 - * dark matter $\sim 25\%$
 - * dark energy $\sim 70\%$
 - * ν s, γ s: tiny fraction
 - properties of DM
 - * massive
 - * electric (and likely color) neutral
 - * non-relativistic, to seed structure formation
 - * one form of DM, ν s, are relativistic
 - what is the DM? some form of elementary particle not included in the SM

Candidates for Dark Matter

- ★ unseen baryons, e.g. BHs, brown dwarves, stellar remnants
 - inconsistent with BBN element abundance calc'n
 - limits from MACHO, EROS, OGL
- \star light neutrinos (= HDM)
- ★ axions/axinos
- **★** WIMPS
- ★ superWIMPS
- ★ Q-balls
- ★ primordial BHs

WIMPs: the WIMP miracle!

- Weakly Interacting Massive Particles
- assume in thermal equil'n in early universe
- Boltzman eq'n:

$$- dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

•
$$\Omega h^2 = \frac{s_0}{\rho_c/h^2} \left(\frac{45}{\pi g_*}\right)^{1/2} \frac{x_f}{M_{Pl}} \frac{1}{\langle \sigma v \rangle}$$

- $\sim \frac{0.1 \ pb}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{m_{wimp}}{100 \ GeV} \right)^2$
- thermal relic \Rightarrow new physics at M_{weak} !

Some WIMP candidates

- 4th gen. Dirac ν (excluded)
- SUSY neutralino $(\chi \text{ or } \widetilde{Z}_1)$
- UED excited photon B^1_{μ}
- little Higgs photon B_H
- little Higgs (theory space) N_1 (scalar)
- warped GUTS: LZP KK fermion
- . . .
- ★ If DM is a WIMP particle, then LHC may be a DM factory!
- ★ May be able to study properties of DM in a laboratory environment!
- * WIMPs, since they are electric and color neutral, will give rise to missing energy at LHC!

Lecture 1. SUSY basics, models and spectra generation

- ★ Outline
- ★ SUSY basics
 - WZ model
 - SUSY master Lagrangian
 - MSSM: construction
 - RGEs, soft term evolution and spectra
 - SUGRA, GMSB, AMSB
 - SUSY spectra demo

Wess-Zumino toy SUSY model: 1974

- $\mathcal{L} = \mathcal{L}_{\text{kin.}} + \mathcal{L}_{\text{mass}}$ $- \mathcal{L}_{\text{kin.}} = \frac{1}{2} (\partial_{\mu} A)^2 + \frac{1}{2} (\partial_{\mu} B)^2 + \frac{i}{2} \overline{\psi} \partial \psi + \frac{1}{2} (F^2 + G^2)$
 - $\mathcal{L}_{\text{mass}} = -m[\frac{1}{2}\bar{\psi}\psi GA FB]$
- A and B are real scalar fields with [A] = [B] = 1
- ψ is a Majorana spinor with $\psi=\psi^c=C\bar{\psi}^T$ and $[\psi]=\frac{3}{2}$

$$- \psi_D(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2E_{\mathbf{k}}} \sum_{s} [c_{\mathbf{k},s} u_{\mathbf{k},s} e^{-ikx} + d_{\mathbf{k},s}^{\dagger} v_{\mathbf{k},s} e^{ikx}]$$

$$- \psi_D^c(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2E_{\mathbf{k}}} \sum_{s} [c_{\mathbf{k},s}^{\dagger} v_{\mathbf{k},s} e^{ikx} + d_{\mathbf{k},s} u_{\mathbf{k},s} e^{-ikx}]$$

$$- \psi_M(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2E_{\mathbf{k}}} \sum_{s} [c_{\mathbf{k},s} u_{\mathbf{k},s} e^{-ikx} + c_{\mathbf{k},s}^{\dagger} v_{\mathbf{k},s} e^{ikx}]$$

- ullet F and G are auxiliary (non-propagating) fields with [F]=[G]=2
 - can be eliminated by E-L equations: F=-mB, G=-mA

Julius Wess (1934-2007) and Bruno Zumino

Julius Wess lecturing at the SUSY07 conference on July 25th, 2007 in Karlsruhe

SUSY transformation in WZ model

- $A \rightarrow A + \delta A$ with $\delta A = i\bar{\alpha}\gamma_5\psi$
- $\delta B = -\bar{\alpha}\psi$,
- $\delta \psi = -F\alpha + iG\gamma_5\alpha + \partial \gamma_5 A\alpha + i\partial B\alpha$,
- $\delta F = i\bar{\alpha} \partial \psi$,
- $G = \bar{\alpha}\gamma_5 \partial \psi$

Using Majorana bilinear re-arrangements (e.g. $\bar{\psi}\chi = -\bar{\chi}\psi$) and product rule $\partial_{\mu}(f\cdot g) = \partial_{\mu}f\cdot g + f\cdot \partial_{\mu}g$ and algebra, can show that $\mathcal{L}\to\mathcal{L}+\delta\mathcal{L}$ with

- $\delta \mathcal{L}_{kin} = \partial^{\mu} \left(-\frac{1}{2} \bar{\alpha} \gamma_{\mu} \partial B \psi + \frac{i}{2} \bar{\alpha} \gamma_{5} \gamma_{\mu} \partial A \psi + \frac{i}{2} F \bar{\alpha} \gamma_{\mu} \psi + \frac{1}{2} G \bar{\alpha} \gamma_{5} \gamma_{\mu} \psi \right)$,
- $\delta \mathcal{L}_{\text{mass}} = \partial^{\mu} (mA\bar{\alpha}\gamma_5\gamma_{\mu}\psi + imB\bar{\alpha}\gamma_{\mu}\psi)$

Since Lagrangian changes by a total derivation, the $action~S=\int \mathcal{L} d^4x$ is invariant! (owing to Gauss' law in 4-d) $\int_V d^4x \partial_\mu \Lambda^\mu = \int_{\partial V} d\sigma \Lambda^\mu n_\mu$ Thus, WZ transformation is a symmetry of the action!

Aspects of the WZ model:

- Can add interactions:
- $\mathcal{L}_{int} = -\frac{g}{\sqrt{2}}A\bar{\psi}\psi + \frac{ig}{\sqrt{2}}B\bar{\psi}\gamma_5\psi + \frac{g}{\sqrt{2}}(A^2 B^2)G + g\sqrt{2}ABF$
- Difficult calculation, but can show $\delta \mathcal{L} \to \text{total derivative}$
- Also, can show: quadratic divergences all cancel!
- If SUSY transformations expressed as $\mathcal{S} \to \mathcal{S}' = e^{i\bar{\alpha}Q} \mathcal{S} e^{-i\bar{\alpha}Q} \approx \mathcal{S} + [i\bar{\alpha}Q,\mathcal{S}] = \mathcal{S} + \delta \mathcal{S} \equiv (1-i\bar{\alpha}Q)\mathcal{S} \text{, then can show that the generator } Q \text{ obeys}$
 - $\bullet \{Q_a, \bar{Q}_b\} = 2(\gamma_\mu)_{ab} P_\mu$
 - SUSY is spacetime symmetry! (super-Poincaré algebra)

Constructing supersymmetric models

- While the WZ model is interesting, it was essentially "taken out of a hat",
 without rules of how to construct SUSY models in general
- Shortly after WZ model appeared in 1974, Salam and Strathdee developed superfield formalism, which does allow one to construct SUSY models in general.
- How does one combine scalar and spinor fields into a single entity?
- introduce $superspace\ x^{\mu} \to (x^{\mu}, \theta_a)$ where $\theta_a\ (a=1-4)$ are four anti-commuting dimensions arranged as a Majorana spinor

Weak Scale Supersymmetry

HB and X. Tata

Spring, 2006; Cambridge University Press

- ★ Part 1: superfields/Lagrangians
 - 4-component spinor notation for exp'ts
 - master Lagrangian for SUSY gauge theories
- ★ Part 2: models/implications
 - MSSM, SUGRA, GMSB, AMSB, · · ·
- ★ Part 3: SUSY at colliders
 - production/decay/event generation
 - collider signatures
 - R-parity violation

Some types of superfields

general superfield:

$$\hat{\Phi}(x,\theta) = \mathcal{S} - i\sqrt{2}\bar{\theta}\gamma_5\psi - \frac{i}{2}(\bar{\theta}\gamma_5\theta)\mathcal{M} + \frac{1}{2}(\bar{\theta}\theta)\mathcal{N} + \frac{1}{2}(\bar{\theta}\gamma_5\gamma_\mu\theta)V^\mu + i(\bar{\theta}\gamma_5\theta)[\bar{\theta}(\lambda + \frac{i}{\sqrt{2}}\partial\psi)] - \frac{1}{4}(\bar{\theta}\gamma_5\theta)^2[\mathcal{D} - \frac{1}{2}\Box\mathcal{S}]$$

- left chiral scalar superfield: $\hat{\mathcal{S}}_L(x,\theta) = \mathcal{S}(\hat{x}) + i\sqrt{2}\bar{\theta}\psi_L(\hat{x}) + i\bar{\theta}\theta_L\mathcal{F}(\hat{x})$ where $\hat{x}_\mu = x_\mu + \frac{i}{2}\bar{\theta}\gamma_5\gamma_\mu\theta$
- right chiral scalar superfield: $\hat{S}_R(x,\theta) = S(\hat{x}^{\dagger}) i\sqrt{2}\bar{\theta}\psi_R(\hat{x}^{\dagger}) i\bar{\theta}\theta_R\mathcal{F}(\hat{x}^{\dagger})$
- multiplication rules
 - LCSSF× LCSSF= LCSSF
 - $RCSSF \times RCSSF = RCSSF$
 - LCSSF× RCSSF = general superfield
- D-term of general SF transforms to total derivative
- F-term of LCSSF or RCSSF transforms into total derivative

Supersymmetric Lagrangians

- ullet Since D and F terms transform into total derivatives, they are candidates for SUSY Lagrangians!
- The $superpotential\ \hat{f}$ is a function of LCSSFs only. Hence it is itself a LCSSF, and its F term is a candidate Lagrangian
- The $K\ddot{a}hler\ potential\ K$ is a function of LCSSFs times RCSSFs. Hence it is a general superfield and its D term is a candidate Lagrangian
- Augmenting the superfields with gauge superfields $\hat{\Phi}_A = \frac{1}{2}(\bar{\theta}\gamma_5\gamma_\mu\theta)V_A^\mu + i\bar{\theta}\gamma_5\theta \cdot \bar{\theta}\lambda_A \frac{1}{4}(\bar{\theta}\gamma_5\theta)^2\mathcal{D}_A$ (in WZ gauge) or $\hat{W}_A(\hat{x},\theta) = \lambda_{LA}(\hat{x}) + \frac{1}{2}\gamma^\mu\gamma^\nu F_{\mu\nu A}(\hat{x})\theta_L i\bar{\theta}\theta_L(\mathcal{D}\lambda_R)_A i\mathcal{D}_A(\hat{x})\theta_L$ allows one to write a $Master\ formula$ for supersymmetric gauge theories!

Master formula for SUSY gauge theories

$$\mathcal{L} = \sum_{i} (D_{\mu} S_{i})^{\dagger} (D^{\mu} S_{i}) + \frac{i}{2} \sum_{i} \bar{\psi}_{i} \not D \psi_{i} + \sum_{\alpha, A} \left[\frac{i}{2} \bar{\lambda}_{\alpha A} (\not D \lambda)_{\alpha A} - \frac{1}{4} F_{\mu\nu\alpha A} F_{\alpha A}^{\mu\nu} \right] \\
- \sqrt{2} \sum_{i,\alpha, A} \left(S_{i}^{\dagger} g_{\alpha} t_{\alpha A} \bar{\lambda}_{\alpha A} \frac{1 - \gamma_{5}}{2} \psi_{i} + \text{h.c.} \right) \\
- \frac{1}{2} \sum_{\alpha, A} \left[\sum_{i} S_{i}^{\dagger} g_{\alpha} t_{\alpha A} S_{i} + \xi_{\alpha A} \right]^{2} - \sum_{i} \left| \frac{\partial \hat{f}}{\partial \hat{S}_{i}} \right|_{\hat{S} = \mathcal{S}}^{2} \\
- \frac{1}{2} \sum_{i,j} \bar{\psi}_{i} \left[\left(\frac{\partial^{2} \hat{f}}{\partial \hat{S}_{i} \partial \hat{S}_{j}} \right)_{\hat{S} = \mathcal{S}} \frac{1 - \gamma_{5}}{2} + \left(\frac{\partial^{2} \hat{f}}{\partial \hat{S}_{i} \partial \hat{S}_{j}} \right)_{\hat{S} = \mathcal{S}}^{\dagger} \frac{1 + \gamma_{5}}{2} \right] \psi_{j},$$

where the covariant derivatives are given by,

$$D_{\mu}S = \partial_{\mu}S + i\sum_{\alpha,A} g_{\alpha}t_{\alpha A}V_{\mu\alpha A}S,$$

$$D_{\mu}\psi = \partial_{\mu}\psi + i\sum_{\alpha,A} g_{\alpha}(t_{\alpha A}V_{\mu\alpha A})\psi_{L}$$

$$-i\sum_{\alpha,A} g_{\alpha}(t_{\alpha A}^{*}V_{\mu\alpha A})\psi_{R},$$

$$(\not\!\!D\lambda)_{\alpha A} = \partial \lambda_{\alpha A} + ig_{\alpha} \left(t_{\alpha B}^{adj} \not\!\!V_{\alpha B}\right)_{AC} \lambda_{\alpha C},$$

$$F_{\mu\nu\alpha A} = \partial_{\mu}V_{\nu\alpha A} - \partial_{\nu}V_{\mu\alpha A} - g_{\alpha}f_{\alpha ABC}V_{\mu\alpha B}V_{\nu\alpha C}.$$

Supersymmetry breaking

- Spontaneous breaking of global SUSY is possible: $\langle 0|\mathcal{F}_i|0\rangle \neq 0 \text{ or } \langle 0|\mathcal{D}_A|0\rangle \neq 0 \text{ (}F\text{ or }D\text{ type breaking)}$
- May also explicitly break SUSY by adding soft SUSY breaking terms to \mathcal{L} :
 - linear terms in the scalar field S_i (relevant only for singlets of all symmetries),
 - scalar masses,
 - and bilinear or trilinear operators of the form $S_i S_j$ or $S_i S_j S_k$ (where $\hat{S}_i \hat{S}_j$ and $\hat{S}_i \hat{S}_j \hat{S}_k$ occur in the superpotential),
 - and finally, in gauge theories, gaugino masses, one for each factor of the gauge group,

Recipe for SUSY model building

- Choose the gauge symmetry (adopting appropriate gauge superfields for each gauge symmetry)
- Choose matter and Higgs representations included as LCSSFs
- Choose the superpotential \hat{f} as a gauge invariant $analytic\ function$ of LCSSFs; degree is \leq 3 for renormalizable theory
- Adopt all allowed gauge invariant soft SUSY breaking terms; these are generally chosen to parametrize our ignorance of the mechanism of SUSY breaking
- The Master formula, augmented by the soft SUSY breaking terms, gives the final Lagrangian of the theory.

The Minimal Supersymmetric Standard Model (MSSM)

Construction

 \star gauge symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$B_{\mu} \rightarrow \hat{B} \ni (\lambda_0, B_{\mu}, \mathcal{D}_B),$$
 $W_{A\mu} \rightarrow \hat{W}_A \ni (\lambda_A, W_{A\mu}, \mathcal{D}_{WA}), A = 1, 2, 3, \text{ and}$
 $g_{A\mu} \rightarrow \hat{g}_A \ni (\tilde{g}_A, G_{A\mu}, \mathcal{D}_{gA}), A = 1, \dots, 8.$

★ matter content: 3 generations quarks and leptons

$$egin{pmatrix} \left(egin{array}{c}
u_{iL} \\
e_{iL}
\end{pmatrix} &
ightarrow & \hat{L}_i \equiv \left(egin{array}{c} \hat{
u}_i \\
\hat{e}_i
\end{pmatrix}, \\
\left(e_R\right)^c &
ightarrow & \hat{E}_i^c, \\
\left(egin{array}{c}
u_{iL} \\
d_{iL}
\end{pmatrix} &
ightarrow & \hat{Q}_i \equiv \left(egin{array}{c} \hat{u}_i \\
\hat{d}_i
\end{pmatrix}, \end{aligned}$$

$$(u_R)^c \rightarrow \hat{U}_i^c,$$

 $(d_R)^c \rightarrow \hat{D}_i^c,$

where e.g.

$$\hat{e} = \tilde{e}_L(\hat{x}) + i\sqrt{2}\bar{\theta}\psi_{eL}(\hat{x}) + i\bar{\theta}\theta_L\mathcal{F}_e(\hat{x}) \tag{1}$$

while

$$\hat{E}^c = \tilde{e}_R^{\dagger}(\hat{x}) + i\sqrt{2}\bar{\theta}\psi_{E^cL}(\hat{x}) + i\bar{\theta}\theta_L \mathcal{F}_{E^c}(\hat{x}). \tag{2}$$

SM Dirac fermions are constructed out of Majorana fermions via

$$e = P_L \psi_e + P_R \psi_{E^c}. \tag{3}$$

where in chiral rep. of γ matrices

$$\psi_e = \begin{pmatrix} e_1 \\ e_2 \\ -e_2^* \\ e_1^* \end{pmatrix} \text{ and } \psi_{E^c} = \begin{pmatrix} e_4^* \\ -e_3^* \\ e_3 \\ e_4 \end{pmatrix}.$$

The MSSM (part 2)

Construction

★ Higgs multiplets:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \to \hat{H}_u = \begin{pmatrix} \hat{h}_u^+ \\ \hat{h}_u^0 \end{pmatrix}. \tag{4}$$

Now spin $\frac{1}{2}$ higgsinos with Y=1 can circulate in triangle anomalies; cancel with additional Y=-1 doublet:

$$\hat{H}_d = \begin{pmatrix} \hat{h}_d^- \\ \hat{h}_d^0 \end{pmatrix}, \tag{5}$$

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$\hat{L} = \begin{pmatrix} \hat{\nu}_{eL} \\ \hat{e}_{L} \end{pmatrix}$	1	2	-1
\hat{E}^c	1	1	2
$\hat{Q} = \left(\begin{array}{c} \hat{u}_L \\ \hat{d}_L \end{array} \right)$	3	2	$\frac{1}{3}$
\hat{U}^c	3 *	1	$-\frac{4}{3}$
\hat{D}^c	3 *	1	$\frac{2}{3}$
$\hat{H}_u = \begin{pmatrix} \hat{h}_u^+ \\ \hat{h}_u^0 \end{pmatrix}$	1	2	1
$\hat{H}_d = \left(egin{array}{c} \hat{h}_d^- \ \hat{h}_d^0 \end{array} ight)$	1	2^*	-1

The MSSM (part 3)

Construction

★ superpotential

$$\hat{f} = \mu \hat{H}_{u}^{a} \hat{H}_{da} + \sum_{i,j=1,3} \left[(\mathbf{f}_{u})_{ij} \epsilon_{ab} \hat{Q}_{i}^{a} \hat{H}_{u}^{b} \hat{U}_{j}^{c} + (\mathbf{f}_{d})_{ij} \hat{Q}_{i}^{a} \hat{H}_{da} \hat{D}_{j}^{c} + (\mathbf{f}_{e})_{ij} \hat{L}_{i}^{a} \hat{H}_{da} \hat{E}_{j}^{c} \right].$$
(6)

The following terms are gauge invariant and renormalizable, but violate baryon and lepton number. They are excluded if one requires R-parity conservation $R=(-1)^{3(B-L)+2s}$:

$$\hat{f}_{\not L} = \sum_{i,j,k} \left[\lambda_{ijk} \epsilon_{ab} \hat{L}_i^a \hat{L}_j^b \hat{E}_k^c + \lambda'_{ijk} \epsilon_{ab} \hat{L}_i^a \hat{Q}_j^b \hat{D}_k^c \right] + \sum_i \mu'_i \epsilon_{ab} \hat{L}_i^a \hat{H}_u^b, \tag{7}$$

and

$$\hat{f}_{\mathcal{B}} = \sum_{i,j,k} \lambda_{ijk}^{\prime\prime} \hat{U}_i^c \hat{D}_j^c \hat{D}_k^c, \tag{8}$$

The MSSM (part 4)

★ soft SUSY breaking terms

$$\mathcal{L}_{\text{soft}} = -\left[\tilde{Q}_{i}^{\dagger}\mathbf{m}_{\mathbf{Q}_{ij}}^{2}\tilde{Q}_{j} + \tilde{d}_{Ri}^{\dagger}\mathbf{m}_{\mathbf{D}_{ij}}^{2}\tilde{d}_{Rj} + \tilde{u}_{Ri}^{\dagger}\mathbf{m}_{\mathbf{U}_{ij}}^{2}\tilde{u}_{Rj} \right]$$

$$+ \tilde{L}_{i}^{\dagger}\mathbf{m}_{\mathbf{L}_{ij}}^{2}\tilde{L}_{j} + \tilde{e}_{Ri}^{\dagger}\mathbf{m}_{\mathbf{E}_{ij}}^{2}\tilde{e}_{Rj} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2}$$

$$- \frac{1}{2}\left[M_{1}\bar{\lambda}_{0}\lambda_{0} + M_{2}\bar{\lambda}_{A}\lambda_{A} + M_{3}\bar{\tilde{g}}_{B}\tilde{g}_{B}\right]$$

$$- \frac{i}{2}\left[M'_{1}\bar{\lambda}_{0}\gamma_{5}\lambda_{0} + M'_{2}\bar{\lambda}_{A}\gamma_{5}\lambda_{A} + M'_{3}\bar{\tilde{g}}_{B}\gamma_{5}\tilde{g}_{B}\right]$$

$$+ \left[(\mathbf{a}_{\mathbf{u}})_{ij}\epsilon_{ab}\tilde{Q}_{i}^{a}H_{u}^{b}\tilde{u}_{Rj}^{\dagger} + (\mathbf{a}_{\mathbf{d}})_{ij}\tilde{Q}_{i}^{a}H_{da}\tilde{d}_{Rj}^{\dagger} + (\mathbf{a}_{\mathbf{e}})_{ij}\tilde{L}_{i}^{a}H_{da}\tilde{e}_{Rj}^{\dagger} + \text{h.c.}\right]$$

$$+ \left[bH_{u}^{a}H_{da} + \text{h.c.}\right],$$

The MSSM (part 5)

★ count parameters

$$- g_1, g_2, g_3, \theta_{QCD}$$

- gaugino masses M_1 , M'_1 , M_2 , M'_2 , M_3 (M'_3 absorbed into \tilde{g})
- $-m_{H_u}^2$, $m_{H_d}^2$, μ , b (phase of b absorbed)
- $-5 \times (6+3) = 45$ in sfermion mass matrices
- $-3 \times (3 \times 3 \times 2) = 54$ in Yukawa matrices
- $-3 \times (3 \times 3 \times 2) = 54$ in a-term matrices
- a global $U(3)^5$ transformation in matter allows 45-2=43 phases absorbed into matter sfermions
- total parameters = 9 + 5 + 45 + 54 + 54 43 = 124
- \star most choices are excluded: lead to FCNC or CP violating effects
 - solutions: universality, decoupling, alignment

The MSSM (part 6): electroweak breaking

- \star construct scalar potential of MSSM: $V = V_F + V_D + V_{soft}$
- \star minimization conditions: $\partial V/\partial h_u^0=\partial V\partial h_d^0=0$ has solution so $\langle h_u^0\rangle=v_u$, $\langle h_d^0\rangle=v_d$ with $\tan\beta\equiv v_u/v_d$
 - W^{\pm} , Z_0 become massive as in SM
 - SM fermions all gain mass e.g. $m_e = f_e v_d$
- ★ states with same spin/charge can mix
 - predict many new states to exist!

The MSSM (part 7): new matter states

- \star spin $\frac{1}{2}$ massive color octet: gluino \tilde{g}
- \star spin $\frac{1}{2}$ bino, wino, neutral higgsinos \Rightarrow neutralinos $\widetilde{Z}_1,~\widetilde{Z}_2,~\widetilde{Z}_3,~\widetilde{Z}_4$
- \star spin $\frac{1}{2}$ charged wino, higgsinos \Rightarrow charginos $\widetilde{W}_1^{\pm},~\widetilde{W}_2^{\pm}$
- \star spin-0 squarks: $\tilde{u}_L,~\tilde{u}_R,~\tilde{d}_L,~\tilde{d}_R,\tilde{s}_L,~\tilde{s}_R,~\tilde{c}_L,~\tilde{c}_R,~\tilde{b}_1,~\tilde{b}_2,~\tilde{t}_1,~\tilde{t}_2$
- \star spin-0 sleptons: \tilde{e}_L , \tilde{e}_R , $\tilde{\nu}_e$, $\tilde{\mu}_L$, $\tilde{\mu}_R$, $\tilde{\nu}_{\mu}$, $\tilde{\tau}_1$, $\tilde{\tau}_2$, $\tilde{\nu}_{\tau}$
- \star spin-0 higgs bosons: h, H, A, H^{\pm} (h usually SM-like)

The MSSM: summary

- ★ The MSSM includes the SM as a sub-theory, but also includes many new states of matter
- ★ Unlike the SM, the MSSM is free of quadratic divergences in the scalar sector
- \star Thus, the MSSM can accommodate vastly different mass scales, e.g. M_{weak} and M_{GUT} or M_{string}
- ★ The 124 parameter MSSM is likely to be the low energy effective theory of some more fundamental theory, perhaps one linked to GUTs or strings
- ★ The MSSM provides for us the possible physical states and Feynman rules needed for making predictions of physical phenomena
- ★ The MSSM parameters are highly constrained by bounds from FCNCs, CP-violation, etc.

The MSSM: RGEs

- ★ If the MSSM is to be valid between vastly different mass scales, then it is important to relate parameters between these scales.
- \star The gauge couplings, Yukawa couplings, μ term and soft breaking parameter evolution is governed by $renormalization\ group\ equations$, or RGEs
- ★ For gauge couplings, these have the form

$$\frac{dg_i}{dt} = \beta(g_i) \quad with \quad t = \log Q \tag{9}$$

★ In SM,

$$\beta(g) = -\frac{g^3}{16\pi^2} \left[\frac{11}{3} C(G) - \frac{2}{3} n_F S(R_F) - \frac{1}{3} n_H S(R_H) \right]. \tag{10}$$

★ In MSSM, the gauginos, matter and Higgs scalars also contribute:

$$\beta(g) = -\frac{g^3}{16\pi^2} \left[3C(G) - S(R) \right], \tag{11}$$

 \star Can use the precision values of g_1 , g_2 and g_3 measured at $Q=M_Z$ at LEP2 as boundary conditions, and extrapolate to high energy

Gauge coupling evolution

The MSSM: RGEs continued

$$\begin{split} \frac{dM_i}{dt} &= \frac{2}{16\pi^2} b_i g_i^2 M_i, \\ \frac{dA_t}{dt} &= \frac{2}{16\pi^2} \left(-\sum_i c_i g_i^2 M_i + 6 f_t^2 A_t + f_b^2 A_b \right), \\ \frac{dA_b}{dt} &= \frac{2}{16\pi^2} \left(-\sum_i c_i' g_i^2 M_i + 6 f_b^2 A_b + f_t^2 A_t + f_\tau^2 A_\tau \right), \\ \frac{dA_\tau}{dt} &= \frac{2}{16\pi^2} \left(-\sum_i c_i'' g_i^2 M_i + 3 f_b^2 A_b + 4 f_\tau^2 A_\tau \right), \\ \frac{dB}{dt} &= \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1 - 3 g_2^2 M_2 + 3 f_b^2 A_b + 3 f_t^2 A_t + f_\tau^2 A_\tau \right), \\ \frac{d\mu}{dt} &= \frac{\mu}{16\pi^2} \left(-\frac{3}{5} g_1^2 - 3 g_2^2 + 3 f_t^2 + 3 f_b^2 + f_\tau^2 \right), \end{split}$$

$$\begin{array}{lcl} \frac{dm_{Q_3}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{1}{15} g_1^2 M_1^2 - 3 g_2^2 M_2^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{10} g_1^2 S + f_t^2 X_t + f_b^2 X_b \right), \\ \\ \frac{dm_{\tilde{t}_R}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{16}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 - \frac{2}{5} g_1^2 S + 2 f_t^2 X_t \right), \\ \\ \frac{dm_{\tilde{b}_R}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{4}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{5} g_1^2 S + 2 f_b^2 X_b \right), \\ \\ \frac{dm_{L_3}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3 g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + f_\tau^2 X_\tau \right), \\ \\ \frac{dm_{\tilde{t}_R}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{12}{5} g_1^2 M_1^2 + \frac{3}{5} g_1^2 S + 2 f_\tau^2 X_\tau \right), \\ \\ \frac{dm_{H_d}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3 g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + 3 f_b^2 X_b + f_\tau^2 X_\tau \right), \\ \\ \frac{dm_{H_u}^2}{dt} & = & \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3 g_2^2 M_2^2 + \frac{3}{10} g_1^2 S + 3 f_b^2 X_b \right), \end{array}$$

where m_{Q_3} and m_{L_3} denote the mass term for the third generation SU(2) squark

and slepton doublet respectively, and

$$X_{t} = m_{Q_{3}}^{2} + m_{\tilde{t}_{R}}^{2} + m_{H_{u}}^{2} + A_{t}^{2},$$

$$X_{b} = m_{Q_{3}}^{2} + m_{\tilde{b}_{R}}^{2} + m_{H_{d}}^{2} + A_{b}^{2},$$

$$X_{\tau} = m_{L_{3}}^{2} + m_{\tilde{\tau}_{R}}^{2} + m_{H_{d}}^{2} + A_{\tau}^{2}, \text{ and}$$

$$S = m_{H_{u}}^{2} - m_{H_{d}}^{2} + Tr\left[\mathbf{m}_{Q}^{2} - \mathbf{m}_{L}^{2} - 2\mathbf{m}_{U}^{2} + \mathbf{m}_{D}^{2} + \mathbf{m}_{E}^{2}\right].$$

Soft term evolution and radiative EWSB for $m_t \sim 175$ GeV

Supergravity

- **\star** In SUSY transformation operator $e^{-i\bar{\alpha}Q}$ let $\alpha=\alpha(x)$ so we have a local SUSY transformation
- \star Just as for gauge theories, will need to introduce a gauge field to maintain covariance: $\psi_{\mu}(x)$, a spin $\frac{3}{2}$ vector-spinor (Rarita-Schwinger) field
- **To** maintain local SUSY, will have to introduce bosonic partner: a spin 2 field $g_{\mu\nu}(x)$
 - $-g_{\mu\nu}$ is massless, and in classical limit obeys Einstein GR eq'ns of motion: it is the graviton field
 - usually, $g_{\mu\nu}(x)$ is traded for the equivalent vierbein field $e^a_\mu(x)$, where $g_{\mu\nu}=e^a_\mu e^b_\nu \eta_{ab}$, where η_{ab} is the Minkowski metric
- \star Can derive a Master formula for supergravity (SUGRA) gauge theories

Supergravity

- SUGRA is inherently non-renormalizable
- SUGRA theories specified by Kähler function

$$G(\hat{\mathcal{S}}^{\dagger}, \hat{\mathcal{S}}) = K(\hat{\mathcal{S}}^{\dagger}, \hat{\mathcal{S}}) + \log|\hat{f}(\hat{\mathcal{S}})|^2, \tag{12}$$

and gauge kinetic function

$$f_{AB}(\hat{S}). \tag{13}$$

- SUGRA can be spontaneously broken just as SUSY can
- Since SUGRA is local SUSY theory, have a super-Higgs mechanism, wherein the gravitino field ψ_{μ} gains a mass $m_{3/2}$ while graviton remains massless
- Can embed MSSM in a SUGRA theory along with gauge singlet field(s) \hat{h}_m with superpotential such that SUGRA is spontaneously broken (hidden sector)
- SUGRA breaking communicated from hidden sector to visible sector via gravity: induces soft SUSY breaking terms of order $\sim m_{3/2}!$

Minimal Supergravity model (mSUGRA)

- Assume MSSM embedded in a SUGRA theory
- SUSY broken in hidden sector with $m_{3/2} \sim M_{weak} \sim 1 \text{ TeV}$
- For simple choice of Kähler function and gauge kinetic function, will induce universal scalar masses m_0 , gaugino masses $m_{1/2}$ and trilinears A_0
- Inspired by gauge coupling unification, these universal choices usually taken at $Q=M_{GUT}\simeq 2\times 10^{16}~{\rm GeV}$
- Evolve couplings and soft parameters from M_{GUT} to M_{weak} ; $m_{H_u}^2 \rightarrow$ negative, breaking EW symmetry.
- All sparticle masses, mixings at $Q=M_{weak}$ calculated in terms of small parameter set:

$$m_0, m_{1/2}, A_0, \tan \beta, sign(\mu)$$
 (14)

 The mSUGRA model is paradigm SUSY model for phenomenological analysis, but is not likely to be the complete story.

Precision calculation of SUSY spectrum:

- need full 2-loop RGE running: gauge, Yukawa, SSB terms
- RG-improved 1-loop effective potential evaluated at optimized scale
- t, b, τ threshold effects
- full set of 1-loop sparticle/Higgs mass corrections
- several public codes are available

Sparticle mass spectra

- ★ Mass spectra codes
- **\star** RGE running: $M_{GUT} \rightarrow M_{weak}$
 - Isajet (HB, Paige, Protopopescu, Tata)
 - $* \geq 7.72$: Isatools
 - SuSpect (Djouadi, Kneur, Moultaka)
 - SoftSUSY (Allanach)
 - Spheno (Porod)
- ★ Comparison (Belanger, Kraml, Pukhov)

SUSY model #1: minimal supergravity (mSUGRA or CMSSM)

- \star Assume nature described by N=1 supergravity gauge theory Lagrangian:
- ★ To accomodate SUSY breaking, must introduce a "hidden sector", consisting of a field or fields which are SM singlets (hence hidden)
- \star Arrange superpotential of hidden sector such that supergravity breaks at mass scale $m\sim 10^{11}$ GeV via superHiggs mechanism
- ★ Gravitational interactions induce exactly the right form of soft SUSY breaking masses, with $m_{SUSY} \sim m_{3/2} \sim m^2/M_P \sim (10^{11}~GeV)^2/10^{19}~GeV \sim 10^3~GeV$
- ullet gravitino decouples? $\widetilde{Z}_1 = LSP$ or \widetilde{G} (see papers by Feng/Ellis)
- \star simplest models (e.g. Polonyi superpotential) give:
 - single scalar mass m_0 ,
 - gaugino mass $m_{1/2}$,
 - trilinear term A_0 , bilinear term B

- \star EWSB radiatively due to large m_t
- ***** EWSB condition: $B \to \tan \beta$; μ^2 fixed by M_Z
- \star parameter space: $m_0, m_{1/2}, A_0, \tan \beta, sign(\mu)$
- ★ this is simplest choice and a baseline model, but many other possibilities depending on high scale physics
 - ullet non-universal matter scalars: $m_{Q_i}^2$, $m_{U_i}^2$, $m_{D_i}^2$, $m_{L_i}^2$, $M_{E_i}^2$
 - ullet non-universal Higgs scalars: $m_{H_u}^2$, $M_{H_d}^2$
 - non-universal gaugino masses: M_1 , M_2 , M_3
 - non-universal A terms: A_t , A_b , $A_ au$
 - FC soft SUSY breaking terms
 - large CP violating phases
 - additional fields beyond MSSM below M_{GUT} ?
 - *R*-parity violating couplings
 - • •

SUSY model #2: gauge-mediated SUSY breaking (GMSB)

- ★ Assume 3 sectors: MSSM, messenger sector, hidden sector
- ★ SUSY breaking in HS
- ★ SUSY breaking communicated to MSSM via gauge interactions from messenger sector
- \star $m_{SUSY}\sim {g_i^2\over 16\pi^2}{\langle F_S
 angle\over M}\sim 1$ TeV, where M =messenger mass and $\langle F_S
 angle$ is SUSY breaking scale
- \star gravitino $m_{\tilde{G}}=rac{\langle F
 angle}{\sqrt{3}M_P}$ can be very light $\sim keV$ so $\tilde{G}=LSP$ and e.g. $\tilde{Z}_1 o\gamma \tilde{G}$
- \star EWSB radiatively due to large m_t as usual

GMSB parameter space

- ★ parameter space:
 - Λ , M, n_5 , $\tan \beta$, $sign(\mu)$, C_{grav}
 - $\Lambda \sim 10-150$ TeV sets sparticle mass scale $m_{SUSY} = \frac{\alpha_i}{4\pi} n_5 \Lambda$
 - M=messenger scale $>\Lambda$
 - $n_5 = \#$ of messenger fields
 - ullet C_{grav} just affects how long lived the NLSP is
 - at colliders: get isolated photons from $\widetilde Z_1 \to \gamma \widetilde G$ or long-lived charged tracks if $\widetilde \tau_1 \to \tau \widetilde G$ is NLSP
- ★ model solves SUSY flavor problem at price of introducing non-minimal messenger sector

SUSY model #3: anomaly-mediated SUSY breaking (AMSB)

- \star supergravity theories always have 1-loop contributions to soft breaking terms of order $m_{SUSY} \sim m_{3/2}/16\pi^2$ coming from superconformal anomaly: usually suppressed compared to tree level SUGRA contribution
- ★ suppose hidden sector is "sequestered" in extra dimensions
- \star then if $m_{3/2} \sim 10-100$ TeV, AMSB contribution to sparticle masses is dominant
- \star gauginos: $M_i = \frac{\beta_i}{g_i} m_{3/2}$
- \star scalars: $m_{\tilde{f}}^2 = -\frac{1}{4} \left\{ \frac{d\gamma}{dg} \beta_g + \frac{d\gamma}{df} \beta_f \right\} m_{3/2}^2$
- \star EWSB radiatively due to large m_t
- \star slepton masses tachyonic $m_{\tilde{\ell}}^2<0$ so add by hand universal contribution m_0^2 (or other solutions)

AMSB parameter space

- ★ parameter space:
 - m_0 , $m_{3/2} \tan \beta$, $sign(\mu)$
- \star LSP =lightest \widetilde{Z}_1 which is wino-like
- \star $m_{\widetilde{W}_1}-m_{\widetilde{Z}_1}\sim 200$ MeV so $\widetilde{W}_1\to \widetilde{Z}_1\pi^+$ and may give an observable track of few cm length: possibly observable
- \star wino-like \widetilde{Z}_1 gives very low relic density: hard to explain dark matter
- ★ solves SUSY flavor problem but tachyonic masses...

Conclusions

- ★ General formulae for constructing softly broken SUSY gauge theories
- ★ most important example: MSSM
 - MSSM \Rightarrow stable hierarchy $M_{weak} M_{Pl.}$
 - RGEs: can connect weak scale to GUT/string scale physics: desert hypothesis
- ★ spectra generation
 - mSUGRA
 - NUSUGRA
 - GMSB
 - AMSB
 - - ...
- ★ demos: Isasugra, comparison page