SUSY Dark Matter Models

Howard Baer Florida State University

- ★ mSUGRA model
- ★ Normal scalar mass hierarchy
- ★ NUHM1
- ★ NUHM2
- ★ MWDM
- ★ BWCA
- ★ LM3DM (compressed SUSY)
- ★ mixed moduli-AMSB (KKLT)

Some successes of SUSY GUT theories

- ★ SUSY divergence cancellation maintains hierarchy between GUT scale $Q = 10^{16}$ GeV and weak scale Q = 100 GeV
- \star gauge coupling unification!
- \star Lightest Higgs mass $m_h \stackrel{<}{\sim} 130$ GeV as indicated by radiative corrections!
- ★ radiative breaking of EW symmetry if $m_t \sim 100 200$ GeV!
- \star dark matter candidate: lightest neutralino $ilde{Z}_1$
- \star stable see-saw mechanism for neutrino mass
- \star SO(10) SUSY GUT: baryogenesis via leptogenesis

Our strategy:

 \star Assume MSSM is valid effective theory between M_{weak} and M_{GUT}

- LSP is stable: good candidate for CDM
- ★ Stipulate SSB terms at $Q = M_{GUT}$ and evaluate SSB at M_{weak} via RG evolution
 - EW symmetry broken radiatively by large m_t
- \star Invoke
 - minimal flavor violation
 - ignore *CP*-viol. phases
- ★ Spectra generated with Isajet/Isasugra
- ★ We will use the measured value $\Omega_{CDM}h^2 = 0.105 \pm 0.01$ as a guide to allowed phenomenology!

mSUGRA model; allowed parameter space

★ Case 1: paradigm mSUGRA model (thanks to Arnowitt, Nanopoulos, Weinberg, other pioneers...)

• $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

Main mSUGRA regions consistent with WMAP

- \star most of parameter space excluded: $\Omega_{CDM}h^2$ too big!
- ★ Exceptions:
 - bulk region (low m_0 , low $m_{1/2}$)
 - stau co-annihilation region $(m_{\tilde{\tau}_1} \simeq m_{\widetilde{Z}_1})$
 - HB/FP region (large m_0 where $|\mu| \rightarrow small$)
 - A-funnel $(2m_{\widetilde{Z}_1} \simeq m_A, m_H)$
 - $h \operatorname{corridor} (2m_{\widetilde{Z}_1} \simeq m_h)$
 - stop co-annihilation region (particular A_0 values $m_{\tilde{t}_1} \simeq m_{\tilde{Z}_1}$)

Constraints as χ^2 on mSUGRA model

Howie Baer, TAMU Particle Physics & Cosmology workshop, May 15, 2007

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata

HB/FP region: absolute measure of $m_{\tilde{g}}$ at LHC!

• LHC events characterized by high iet. *b*-jet, isol. lepton multiplicity

Measure $m_{\tilde{g}}$ in HB/FP region via total rate to $\sim 8\%$

• require cuts C1 plus $n_{(j)} \ge 7$, $n(b-j) \ge 2$, $M_{eff} \ge 1400 \text{ GeV}$

Direct detection of SUSY DM

scan over mSUGRA space ($\Omega_{CDM}h^2 \sim 0.11$) :

- ★ Stage 1:
 - CDMS1, Edelweiss, Zeplin1
- ★ Stage 2:
 - CDMS2, CRESST2, Edelweiss2
 - Zeplin2, Xenon-10
- ★ Stage 3:
 - SuperCDMS, LUX, (mini)CLEAN
 - WARP, ArDM

Indirect detection (ID) of SUSY DM: *v*-telescopes

- $\star \tilde{Z}_1 \tilde{Z}_1 \rightarrow b\bar{b}, etc.$ in core of sun (or earth): $\Rightarrow \nu_\mu \rightarrow \mu$ in ν telescopes
 - Amanda, Icecube, Antares

ID of SUSY DM: γ and anti-matter searches

- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \gamma$ in galactic core or halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow e^+$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{p}$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{D}$ in galactic halo

Direct and indirect detection of neutralino DM

mSUGRA, $A_0=0$, tan $\beta=50$, $\mu<0$ 1600 1400 1200 a 1000 geV) geV) LC1000 600 400 _C! no REWSB 200 0 1000 3000 4000 5000 2000 $m_0 (GeV)$ $\Phi(p^{-})$ 3e-7 GeV⁻¹ cm⁻² s⁻¹ sr⁻¹ (S/B)_{e+}=0.01 $\Phi(\gamma)=10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$ $\square \Phi^{\text{sun}}(\mu)=40 \text{ km}^{-2} \text{ yr}^{-1}$ $\square m_{\text{h}}=114.4 \text{ GeV}$ $\Phi^{\text{earth}}(\mu)$ =40 km⁻² yr⁻¹ $\sigma(\tilde{Z}_1 p) = 10^{-9} pb$ • $0 < \Omega h^2 < 0.129$

HB, Belyaev, Krupovnickas, O'Farrill

SUGRA models with non-universal scalars

- Normal scalar mass hierarchy (NMH):
- $BF(b \rightarrow s\gamma)$ prefers heavy 3rd gen. squarks
- $(g-2)_{\mu}$ prefers light 2nd gen. sleptons
- $m_0(1) \simeq m_0(2) \ll m_0(3)$
 - (preserve FCNC bounds)
- motivation: reconcile $BF(b \to s\gamma)$ with $(g-2)_{\mu^{\text{E}}}^{\widetilde{\mathfrak{g}}^{\text{70}}}$
 - HB, Belyaev, Krupovnickas, Mustafayev
 - JHEP 0406, 044 (2004)

Normal scalar mass hierarchy: parameter space

- $m_0(1) \simeq m_0(2) \ll m_0(3)$
- LHC: light sleptons, enhanced leptonic cascade decays
- ILC: first two gen. sleptons likely accessible; squarks/staus heavy

SUGRA models with non-universal Higgs mass (NUHM1)

- $m_{H_u}^2 = m_{H_d}^2 \equiv m_{\phi}^2 \neq m_0$: Drees; HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SO(10) SUSYGUTs where $\hat{H}_{u,d} \in \phi(10)$ while matter $\in \psi(16)$
- $m_{\phi}^2 \gg m_0 \Rightarrow$ higgsino DM for any $m_0, m_{1/2}$
- $m_{\phi}^2 < 0 \Rightarrow$ can have A-funnel for any $\tan \beta$

NUHM2 (2-parameter case)

- $m_{H_u}^2 \neq m_{H_d}^2 \neq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SU(5) SUSYGUTs where $\hat{H}_u \in \phi(5)$, $\hat{H}_d \in \phi(\bar{5})$
- can re-parametrize $m_{H_u}^2$, $m_{H_d}^2 \leftrightarrow \mu$, m_A (Ellis, Olive, Santoso)
- large S term in RGEs \Rightarrow light \tilde{u}_R , \tilde{c}_R squarks, $m_{\tilde{e}_L} < m_{\tilde{e}_R}$

NUHM2: m₀=300GeV, m_{1/2}=300GeV, tanβ=10, A₀=0, m_r=178GeV

Non-universal gaugino masses

- ★ SUGRA models where GKF transforms non-trivially (Snowmass '96)
- ★ Heterotic superstring models with orbifold compactification: SUSY breaking dominated by the moduli field
- \star KKLT model of type IIB string compactification with fluxes

* ...

- ★ Extra-dimensional SUSY GUT models where SUSY breaking is communicated from the SUSY breaking brane to the visible brane via gaugino mediation (e.g. Dermisek-Mafi model)
- ★ Here we adopt a phenomenological approach of independent M_1 , M_2 , M_3 but require consistency with WMAP
 - MWDM: HB, Mustafayev, Park, Profumo, JHEP0507, 046 (2005)
 - BWCA DM: HB, Krupovnickas, Mustafayev, Park, Profumo, Tata, JHEP0512 (2005) 011.

- LM3DM: HB, Mustafayev, Park, Profumo, Tata, JHEP0604 (2006) 041.

 Related work: Corsetti and Nath; Birkedal-Hansen and Nelson; Bertin, Nezri and Orloff; Bottino, Donato, Fornengo, Scopel; Belanger, Boudjema, Cottrant, Pukhov, Semenov; Mambrini, Munoz and Cerdeno; Auto, HB, Belyaev, Krupovnickas; Masiero, Profumo, Ullio

$$\Omega_{\widetilde{Z}_1}h^2$$
 vs. M_1

Howie Baer, TAMU Particle Physics & Cosmology workshop, May 15, 2007

Sparticle mass spectra vs M_1

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan \beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

MWDM: plot $r_1 \equiv M_1/M_2$ (at M_{GUT} which gives $\Omega_{CDM}h^2 \simeq 0.11$

MWDM: small $\widetilde{Z}_2 - \widetilde{Z}_1$ mass gap

mSUGRA: $tan\beta=10$, $A_0=0$, $\mu > 0$, $m_t=178$ GeV

NUGM: $M_1 \neq m_{1/2}$, $tan\beta=10$, $A_0=0$, $\mu > 0$, $m_t=178$ GeV

$m(\ell^+\ell^-)$: mass gap observable at LHC for MWDM

Howie Baer, TAMU Particle Physics & Cosmology workshop, May 15, 2007

Bino-wino co-annihilation (BWCA) scenario

- If $M_1/M_2 < 0$, then no mixing between bino-wino
- Can only reduce relic density via bino-wino co-annihilation $(m_{\widetilde{Z}_1} \sim m_{\widetilde{W}_1} \sim m_{\widetilde{Z}_2})$ when $M_1 \simeq -M_2$ at $Q = M_{weak}$
- plot $r_1 = -M_1/M_2$ (at M_{GUT})

2005/07/26 09.06

Howie Baer, TAMU Particle Physics & Cosmology workshop, May 15, 2007

26

In BWCA at $m_0 \stackrel{<}{\sim} 500$ GeV, $BF(\widetilde{Z}_2 \rightarrow \widetilde{Z}_1 \gamma)$ enhanced!

MWDM: $M_2 \neq m_{1/2}$, $tan\beta=10$, $A_0=0$, $\mu > 0$, $m_t=178 \text{ GeV}$ BWCA: $M_2 \neq m_{1/2}$, $tan\beta=10$, $A_0 = 0$, $\mu > 0$, $m_t = 178 \text{ GeV}$ m_{1/2} (TeV) 6.0 1.4 (TeV) 0.8 1.2 0.09 0.12 0.7 1 10⁻² 0.11 0.6 0.10 0.8 0.5 10-4 0.4 0.6 0 0.09 0.3 0.11 0.05 0.3 0.4 0.2 LEP 2 0.2 0.1 LEP2 0.2 1.2 1.4 1.6 1.8 0.2 0.4 0.6 0.8 1.2 1.4 1.6 0.4 0.6 0.8 1 1.8 1 m_o (TeV) m_o (TeV)

Haber+Wyler; Ambrosanio+Mele; Baer+Krupovnickas: JHEP 0209, 038 (2002)

Mixed higgsino DM from a low M_3 (LM3DM)

• low $M_3 \Rightarrow$ low $m_{\tilde{g}}, m_{\tilde{q}}, \mu$

• called "compressd SUSY" in related scenario by S. P. Martin

Sparticle mass spectra for LM3DM

2006/02/14 10.59

Direct/indrct DM rates greatly enhanced for LM3DM

 $m_0=300 \text{ GeV}, m_{1/2}=300 \text{ GeV}, \tan\beta=10, A_0=0, \mu>0, m_t=175 \text{ GeV}$

Howie Baer, TAMU Particle Physics & Cosmology workshop, May 15, 2007

In LM3DM, $BF(\tilde{g} \rightarrow \tilde{Z}_i)$ loop decay enhanced!

2006/02/03 16.37

Baer, Tata, Woodside: PRD42 (1990) 1568.

Howie Baer, TAMU Particle Physics & Cosmology workshop, May 15, 2007

In LM3DM, ratio $m_{\tilde{g}}: m_{\widetilde{W}_1}: m_{\widetilde{Z}_1} \sim 2.5: 1.5: 1$

- Can search for $p\bar{p} \rightarrow \tilde{g}\tilde{g} \rightarrow jets + \not\!\!\!E_T$ at Tevatron;
- Search is *not* pre-empted by LEP2 bouds on $m_{\widetilde{W}_1}$
- Can see $m_{\tilde{g}}$ from 200 340 GeV: HB, Mustafayev, Tata PRD**75**,035004 (2007)

Mixed modulus-AMSB models

★ KKLT model: type IIB superstring compactification with fluxes

- stabilize moduli/dilaton via fluxes and e.g. gaugino condensation on $D7\,$ brane
- introduce anti-D3 brane (uplifting potential; de Sitter universe with $\Lambda > 0$
- small SUSY breaking due to $\overline{D3}$ brane
- mass hierarchy: $m_{moduli} \gg m_{3/2} \gg m_{SUSY}$
- ★ MSSM soft terms calculated by Choi, Falkowski, Nilles, Olechowski, Pokorski
- ★ phenomenology: Choi, Jeong, Okumura, Falkowski, Lebedev, Mambrini,Kitano, Nomura
- ★ see also: HB, E. Park, X. Tata, T. Wang, JHEP0608, 041 (2006); PLB641, 447 (2006); hep-ph/0703024.

Parameter space of MM-AMSB (mirage unification) model

- MSSM sparticle mass scale $\sim \frac{m_{3/2}}{16\pi^2} \equiv M_s$
- Ratio of modulus-mediated and anomaly-mediated contributions set by a phenomenological parameter α
- Modulus-mediated contributions depend on location of fields in extra dimensions. These contributions depend on "modular weights" of the fields, determined by where these fields are located.
 - modular weights $n_i = 0$ (1) ($(\frac{1}{2})$) for D7 (D3) ((intersection))
 - Gauge kinetic function indices $l_a = 1$ (0) on D7 (D3) branes.

Model completely specified by $m_{3/2}, \ \alpha, \ \tan \beta, \ sign(\mu), \ n_i, \ l_a$

• Radiative EWSB determines μ^2 as usual; model into Isajet 7.75

Soft SUSY Breaking Terms

The soft terms renormalized at $Q \sim M_{\rm GUT}$ are given by,

$$M_a = M_s \left(\ell_a \alpha + b_a g_a^2 \right),$$

$$A_{ijk} = M_s \left(-(3 - n_i - n_j - n_k) \alpha + \gamma_i + \gamma_j + \gamma_k \right),$$

$$m_i^2 = M_s^2 \left((1 - n_i) \alpha^2 + 4\alpha \xi_i - \dot{\gamma}_i \right),$$

with

$$\xi_{i} = \sum_{j,k} (3 - n_{i} - n_{j} - n_{k}) \frac{y_{ijk}^{2}}{4} - \sum_{a} l_{a} g_{a}^{2} C_{2}^{a}(f_{i}), \text{ and } \dot{\gamma}_{i} = 8\pi^{2} \frac{\partial \gamma_{i}}{\partial \log \mu}$$

Meauring modular weights at LHC and ILC

A plot of the mirage unification scale versus modulus-AMSB mixing parameter α , assuming l = 1.

At $Q = \mu_{mir.} = M_{GUT} e^{-8\pi^2/(l\alpha)}$, can determine soft terms via RG running up, if weak scale parameters are known.

At $Q = \mu_{mir.}$, ratio of scalar to gaugino masses is given by

$$\left. \frac{m_i}{M_a} \right|_{\mu_{\min}} = \frac{\sqrt{1 - n_i}}{l_a}.$$

For $l_a = 1$, this measures the matter modular weight!

Gaugino masses at weak scale in MM-AMSB:

Low mirage unification scale

If $M_1(\text{weak}) = \pm M_2(\text{weak})$, potential for agreement with relic density via MWDM or BWCA!

$\alpha vs. m_{3/2}$ space for $n_m = n_H = 0$:

Stop coannihilation region. Mixed higgsino region at low positive alpha. BWCA for $\alpha < 0$. No MWDM region.

Stau coannihilation, Higgs funnel, MWDM and BWCA regions clearly seen. Also, mixed bino-wino-higgsino region (via low $|M_3|$). Bulk region at low $m_{3/2}$.

Conclusions: SUSY dark matter models

- ★ We use the measured relic density of CDM as a guide to SUSY phenomenology in the MSSM
 - mSUGRA models: allowed regions
 - * HB/FP region: measure $m_{\widetilde{g}}$ to $\sim 8\%$
 - NMH
 - NUHM1
 - NUHM2
 - MWDM
 - BWCA DM
 - LM3DM
 - mixed moduli-AMSB (KKLT, mirage unification)
- \star data coming soon from LHC will be final arbiter!