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Abstract

Recently, two measures of electroweak finetuning (EWFT) have been introduced for SUSY
models: ∆EW compares the Z mass to each separate weak scale contribution to mZ

while ∆HS compares the Z mass to high scale input parameters and their consequent
renormalizaton group evolution. While the paradigm mSUGRA/CMSSM model has been

shown to be highly finetuned under both parameters (∆EW
>∼ 102 and ∆HS

>∼ 103), the
two-parameter non-universal HIggs model (NUHM2) in the context of radiatively-driven

natural SUSY (RNS) enjoys ∆EW as low as 10, while ∆HS remains
>∼ 103. We investigate

finetuning in the 19-free-parameter SUGRA model (SUGRA19). We find that with 19 free
parameters, the lowest ∆EW points are comparable to what can be achieved in NUHM2
with just 6 free parameters. However, in SUGRA19, ∆HS can now also reach as low as
5 − 10. The conditions which lead to low ∆HS include mHu ∼ mZ at the high scale,
with non-universal gaugino masses M1,2 ≫ M3 also at mGUT . The low ∆HS models are
severely constrained by b → sγ branching fraction. In both cases of low ∆EW and ∆HS ,
the superpotential µ parameter should be ∼ 100 − 300 GeV. While SUSY models with
low EWFT may or may not be discoverable at LHC, the predicted light higgsinos must

show up at a linear e+e− collider with
√

s
>∼ 2|µ|.
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1 Introduction

Supersymmetric models of particle physics are renown for providing an elegant solution to the
daunting gauge hierarchy problem. They also receive indirect experimental support from 1.
the measured strengths of weak scale gauge couplings, which allow for unification at a scale
mGUT ≃ 2 × 1016 GeV within the Minimal Supersymmetric Standard Model (MSSM) and 2.
from the measured value of the top quark mass, which is sufficiently high as to radiatively
drive electroweak symmetry breaking (REWSB)[1]. Along with these plaudits, 3. the recent
discovery by Atlas[2] and CMS[3] of a Higgs-like boson with mass mh ≃ 125 GeV confirms
predictions from models of weak scale supersymmetry[4] where (in the context of the MSSM)
a value mh ∼ 114 − 135 GeV was required[5]. The emergent picture is that the MSSM (or
possible extensions) may provide a solid description of nature not only at the weak scale, but
perhaps all the way up to energy scales associated with grand unification[6].

Such an audacious extrapolation has suffered a string of serious set-backs: so far, no signs of
supersymmetric matter have emerged from LEP, LEP2, Tevatron or, more recently, LHC data.
Recent analyses from Atlas and CMS in the context of the minimal supergravity (mSUGRA

or CMSSM) model[7] require mg̃
>∼ 1.4 TeV for mq̃ ∼ mg̃ and mg̃

>∼ 1 TeV for mg̃ ≪ mq̃.
Naively, these results exacerbate the so-called Little Hierarchy Problem (LHP)[8]: why is there
an apparent discrepancy between the weak scale (typified by mZ ≃ 91.2 GeV) and the SUSY

scale, where m(sparticle)
>∼ 1 TeV? The growing scale mismatch has led some physicists to

call into question whether or not weak scale SUSY really exists, or at least to concede that it
suffers unattractive electroweak finetunings (EWFT)[9].

Traditionally, EWFT has been quantified using the Barbieri-Giudice measure[10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21]

∆BG ≡ maxi

∣∣∣∣∣
∂ ln m2

Z

∂ ln ai

∣∣∣∣∣ (1)

where ai represents various fundamental parameters of the theory, usually taken to be some set
of soft SUSY breaking parameters defined at some high energy scale ΛHS below which the theory
in question is posited to be the correct effective field theory description of nature. The value of
∆BG then answers the question: how stable is the fractional Z-boson mass against fractional
variation of high scale model parameters? Depending on which parameters are included in
the set ai, very different answers emerge[21]. In addition, theories which are defined at very
different values of ΛHS, but which nonetheless lead to exactly the same weak scale sparticle
mass spectra, give rise to very different values of ∆BG.

1.1 ∆EW and ∆HS

Recently, two different measures of EWFT– ∆EW and ∆HS– have been proposed which answer
a different but related question: how is it possible that mZ has a value of just 91.2 GeV while
gluino and squark masses exist at TeV or even far beyond values? The answer should be:
those independent contributions which enter the scalar potential and conspire to build up the
Z-boson mass should all be comparable to mZ .
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Minimization of the scalar potential in the MSSM[4] leads to the well-known relation that

m2
Z

2
=

m2
Hd

+ Σd
d − (m2

Hu
+ Σu

u) tan2 β

tan2 β − 1
− µ2 , (2)

where m2
Hu

and m2
Hd

are soft SUSY breaking (not physical) Higgs mass terms, µ is the super-
potential Higgsino mass term, tan β ≡ vu/vd is the ratio of Higgs field vevs and Σu

u and Σd
d

include a variety of independent radiative corrections[22].

1.1.1 ∆EW

Noting that all entries in Eq. 2 are defined at the weak scale, the electroweak fine-tuning
parameter

∆EW ≡ maxi |Ci| /(m2
Z/2) , (3)

may be constructed, where CHd
= m2

Hd
/(tan2 β − 1), CHu

= −m2
Hu

tan2 β/(tan2 β − 1) and
Cµ = −µ2. Also, CΣu

u(k) = Σu
u(k)/(m2

Z/2) and CΣd
d
(k) = Σd

d(k)/(m2
Z/2), where k labels the

various loop contributions included in Eq. 2. A low value of ∆EW means less fine-tuning,
e.g. ∆EW = 20 corresponds to ∆−1

EW = 5% finetuning amongst terms contributing to m2
Z/2.

Since CHd
and CΣd

d
(k) terms are suppressed by tan2 β − 1, for even moderate tanβ values the

expression Eq. 2 reduces approximately to

m2
Z

2
≃ −(m2

Hu
+ Σu

u) − µ2 . (4)

In order to achieve low ∆EW , it is necessary that −m2
Hu

, −µ2 and each contribution to −Σu
u all

be nearby to m2
Z/2 to within a factor of a few.

A scan over mSUGRA/CMSSM parameter space, requiring that LHC sparticle mass and
mh = 125 ± 2 GeV constraints be obeyed, finds a minimal value of ∆EW ∼ 102, with more
common values being ∆EW ∼ 103 − 104. Thus, one may conclude that the Z mass is rather
highly finetuned in this paradigm model. In the case of mSUGRA, the value Cµ becomes low
only in the hyperbolic branch/focus point[16, 18] (HB/FP) region. In this region, however, m0

and consequently mt̃1,2
are very large, so that Σu

u(t̃1,2) are each large, and the model remains
finetuned.

Alternatively, if one moves to the two-parameter non-universal Higgs model (NUHM2)[23],
with free parameters

m0, m1/2, A0, tanβ, µ, mA (5)

then

1. µ can be chosen in the 100 − 300 GeV range since it is now a free input parameter,

2. a value of m2
Hu

(mGUT ) ∼ (1.3− 2.5)m0 may be chosen so that m2
Hu

is driven only slightly
negative at the weak scale, leading to m2

Hu
(weak) ∼ −m2

Z/2, and

3. with large stop mixing from A0 ∼ ±1.6m0, the top-squark radiative corrections are soft-
ened while mh is raised to the ∼ 125 GeV level[22].
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In the NUHM2 model, ∆EW as low as 5 − 10 can be generated. For such cases, the Little
Hierarchy Problem seems to disappear. The low ∆EW models are typified by the presence of
light higgsinos m±

W̃1

, m
Z̃1,2

∼ 100−300 GeV which should be accessible to a linear e+e− collider

operating with
√

s
>∼ 2|µ|. Also, mg̃ ∼ 1− 5 TeV while mt̃1 ∼ 1− 2 TeV and mt̃2 ∼ 2− 4 TeV.

The measure ∆EW listed above is created from weak scale MSSM parameters and so contains
no information about any possible high scale origin, even though low values of ∆EW may be
required of high scale models: in this sense, low ∆EW captures a minimal EWFT required of
even high scale SUSY models.

1.1.2 ∆HS

To include explicit dependence on the high scale Λ at which the SUSY theory may be defined,
we may write the weak scale parameters m2

Hu,d
and µ2 in Eq. (2) as

m2
Hu,d

= m2
Hu,d

(Λ) + δm2
Hu,d

; µ2 = µ2(Λ) + δµ2 , (6)

where m2
Hu,d

(Λ) and µ2(Λ) are the corresponding parameters renormalized at the high scale

Λ. It is the δm2
Hu,d

terms that will contain the log Λ dependence emphasized in constructs of

natural SUSY models[24, 25, 26]. In this way, we write

m2
Z

2
=

(m2
Hd

(Λ) + δm2
Hd

+ Σd
d) − (m2

Hu
(Λ) + δm2

Hu
+ Σu

u) tan2 β

tan2 β − 1
− (µ2(Λ) + δµ2) . (7)

In the same spirit used to construct ∆EW , we can now define a fine-tuning measure that encodes
the information about the high scale origin of the parameters by requiring that each of the terms
on the right-hand-side of Eq. (7) (normalized again to m2

Z/2) be smaller than a value ∆HS. The
high scale fine-tuning measure ∆HS is thus defined to be

∆HS ≡ maxi|Bi|/(m2
Z/2) , (8)

with BHd
≡ m2

Hd
(Λ)/(tan2 β − 1) etc., defined analogously to the set Ci.

As discussed above, in models such as mSUGRA whose domain of validity extends to very
high scales, because of the large logarithms one would expect that (barring seemingly accidental
cancellations) the BδHu

contributions to ∆HS would be much larger than any contributions to
∆EW because the term m2

Hu
evolves from large m2

0 through zero to negative values in order to
radiatively break electroweak symmetry. Thus, ∆HS is numerically very similar to the EWFT
measure advocated by Kitano-Nomura[24] where ∆KN = δm2

Hu
/(m2

h/2)

Scans of the mSUGRA/CMSSM model in Ref. [27] found ∆HS
>∼ 103. In Ref. [22], scans

over NUHM2 model similarly found ∆HS
>∼ 103. Thus, both the mSUGRA and NUHM2 models

would qualify as highly EW finetuned under ∆HS.

1.2 Goals of this paper

In this paper, we would like to maintain the SUSY grand desert scenario where the MSSM is
postulated as the correct effective theory below Q ≃ mGUT . However, we would like to expand
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our set of input parameters, in this case, to a maximal set of 19, which maintains the scenario of
minimal flavor and minimal CP -violation. The resulting model, dubbed here as SUGRA19[28],
has the same parameter freedom as the more popular pMSSM model[29]. However, unlike
pMSSM defined at the weak scale, SUGRA19 maintains the successes of renormalization group
evolution, and its consequent gauge coupling unification and radiative electroweak symmetry
breaking due to the large value of mt.

In this paper, we have several goals. The first is to check, under models with maximal
parameter freedom, whether even lower values of ∆EW ≪ 10 can be found, or whether NUHM2
already achieves the minimal EWFT values. We will find that ∆EW ∼ 5 − 10 is about as low
as can be achieved while maintaining accord with phenomenological constraints, and that the
resulting models tend to look phenomenologically rather similar to RNS models as derived from
NUHM2 parameter space.

Our second goal is to check whether values of ∆HS ≪ 103 can be found. In the case of
SUGRA19, we will find that ∆HS as low as 5−10 can also be found, but only for special choices
of non-universal SUGRA parameters. The low ∆HS models appear tightly constrained if accord
with BF (b → sγ) measurements is imposed. Both the low ∆EW and the low ∆HS models are
characterized by light higgsinos with mass ∼ 100 − 300 GeV, which should be accessible to
linear collider searches, although perhaps not accessible to LHC searches. We present some
interesting benchmark (BM) points for both low ∆EW and low ∆HS .

Before proceeding, we mention our results in relation to several previous works on reduced
EWFT in models with non-universal soft SUSY breaking terms. After several initial studies
using the BG measure in universal models[10, 11, 12, 13, 15], Kane and King[17] showed that
non-universal gaugino masses with M1, M2 > M3 lead to reduced EWFT. These were followed
by similar studies by Abe et al.[19] and Martin[20], the latter of which was used to motivate
a compressed SUSY mass spectrum. Recently, Gogoladze et al.[30] studied the measures ∆EW

and ∆HS within the context of GUT-motivated gaugino mass non-universality using effectively
a 5-parameter model with gaugino masses related by M1 = 2

5
M3 + 3

5
M2. In their study, they

were already able to reduce the maximum ∆HS values down to the ∼ 30 level, which is already
quite close to what is achieved here using 19 free parameters.

2 Scan over 19 parameter SUGRA model

To calculate superparticle mass spectra in the SUGRA19 model, we employ the Isajet 7.83 [31]
SUSY spectrum generator Isasugra[32]. Isasugra begins the calculation of the sparticle mass
spectrum with input DR gauge couplings and fb, fτ Yukawa couplings at the scale Q = MZ

(ft running begins at Q = mt) and evolves the 6 couplings up in energy to scale Q = MGUT

(defined as the value Q where g1 = g2) using two-loop RGEs. We do not enforce the exact
unification condition g3 = g1 = g2 at MGUT, since a few percent deviation from unification
can be attributed to unknown GUT-scale threshold corrections [33]. Next, we impose the
SSB boundary conditions at Q = MGUT and evolve the set of 26 coupled two-loop MSSM
RGEs [34, 35] back down in scale to Q = MZ . Full two-loop MSSM RGEs are used for soft
term evolution, and the gauge and Yukawa coupling evolution includes threshold effects in
the one-loop beta-functions, so the gauge and Yukawa couplings transition smoothly from the
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MSSM to SM effective theories as different mass thresholds are passed. In Isasugra, the values
of SSB terms which mix are frozen out at the scale Q = mSUSY =

√
mt̃Lmt̃R , while non-mixing

SSB terms are frozen out at their own mass scale [32]. The scalar potential is minimized
using the RG-improved one-loop MSSM effective potential evaluated at an optimized scale
Q = mSUSY to account for leading two-loop effects [36]. Once the tree-level sparticle mass
spectrum is obtained, one-loop radiative corrections are calculated for all sparticle and Higgs
boson masses, including complete one-loop weak scale threshold corrections for the top, bottom
and tau masses at scale Q = mSUSY [37]. Since Yukawa couplings are modified by the threshold
corrections, the solution must be obtained iteratively, with successive up-down running until a
convergence at the required level is found.

We search for models with low ∆EW and low ∆HS by first performing a broad-based random
scan over the following SUGRA19 parameter ranges:

• Gaugino masses: M1, M2, M3 : 0 − 3.5 TeV

• First/second generation scalar masses: mQ1
, mU1

, mD1
, mL1

, mE1
: 0 − 3.5 TeV,

• Third generation scalar masses: mQ3
, mU3

, mD3
, mL3

, mE3
: 0 − 3.5 TeV,

• Higgs soft masses: mHu
, mHd

: 0 − 3.5 TeV,

• trilinear soft terms: At, Ab, Aτ :−3.5 TeV → 3.5 TeV,

• ratio of weak scale Higgs vevs tanβ : 2 − 60.

We adopt a common mass for first and second generation scalars so as to avoid the most
stringent SUSY FCNC constraints[38].

We require of our solutions that:

• electroweak symmetry be radiatively broken (REWSB),

• the neutralino Z̃1 is the lightest MSSM particle,

• the light chargino mass obeys the model independent LEP2 limit, m
W̃1

> 103.5 GeV[39]
and

• 123 < mh < 128 GeV.

We do not impose any LHC sparticle search limits since our general scan can produce com-
pressed spectra which in many cases can easily elude LHC gluino and squark searches. Points
which satisy these constraints are plotted as blue circles in the following scatter plots.

We will also calculate the values of BF (b → sγ)[40] and BF (BS → µ+µ−)[41] for each point
generated. The measured value of BF (b → sγ) is found to be (3.55 ± 0.26) × 10−4 [42]. For
comparison, the SM prediction[43] of BF SM(b → sγ) = (3.15±0.23)×10−4. Also, recently the
LHCb collaboration has found an excess over the background for the decay Bs → µ+µ−[44].
They find a branching fraction of BF (Bs → µ+µ−) = 3.2+1.5

−1.2 × 10−9 which is in accord with
the SM prediction of (3.2± 0.2)× 10−9. Points with BF (b → sγ) within 3σ of measured value
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Figure 1: Plot of ∆HS vs. ∆EW from a broad (dark/light blue) and focused (red/orange) scan
over SUGRA19 model parameter space.

(BF ∼ (2.5 − 4.5) × 10−4 and points with BF (Bs → µ+µ−) = (2 − 4.7) × 10−9 will be labeled
as light blue, showing that these points are also in accord with B-physics constraints.

Our first set of results are shown in Fig. 1. The broad scan points are shown in blue. Here,
we see that the bulk of generated points yield ∆EW and ∆HS

>∼ 103, so would qualify as highly
EW finetuned in generating mZ = 91.2 GeV. The points with the lowest ∆EW values come in
with ∆EW ∼ 10, which is similar to that which can be achieved in the more restrictive NUHM2,
but which is much better than what can be achieved in mSUGRA.

The lowest ∆EW point has ∆EW = 7.9, while the corresponding ∆HS = 190. The SUGRA19
parameters associated with this point are listed in Table 1 in the column labeled as EW1. The
point has the required low µ ∼ 180 GeV and m2

Hu
(mweak) ∼ −(171 GeV)2. In addition, the

large top-squark mixing At/mQ(3) ∼ 2.1 softens the top squark radiative corrections Σu
u(t̃1,2)

whilst raising mh up to 123.5 GeV.
The corresponding sparticle mass spectra are listed in Table 2. The gluinos and squarks are

∼ 2 − 3 TeV: well beyond current LHC reach. The W̃±

2 and Z̃1,2 are dominantly higgsino-like
with a mass gap m

Z̃2

− m
Z̃1

≃ 3 GeV. Thus, even though the higgsinos can be produced with
large cross sections at LHC, the very soft visible energy release from their decays makes them
difficult to detect[45]. The light higgsinos should be straightforward to detect at a linear e+e−
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parameter EW1 HS1 HS2
M1(mGUT ) 2822.1 3266.2 3416.4
M2(mGUT ) 3385.3 2917.8 3091.3
M3(mGUT ) 884.9 1095.7 1085.8
mQ(1) 2484.7 1192.6 978.5
mU (1) 2506.2 2468.3 2440.6
mD(1) 2342.1 1508.9 1404.2
mL(1) 1820.4 623.8 754.8
mE(1) 1731.2 936.1 915.8
mQ(3) 698.3 6.6 371.3
mU (3) 1552.8 233.9 23.2
mD(3) 1498.5 2946.0 3052.4
mL(3) 3339.3 341.1 451.3
mE(3) 2114.9 1268.7 1247.5
mHu

871.3 314.0 125.4
mHd

2205.3 3160.4 2964.9
At -1509.6 -1024.4 -801.3
Ab 2301.7 3121.6 3294.3
Aτ 3307.3 1932.0 1754.5
tan β 27.0 51.1 29.0

µ 181.4 242.8 98.0
∆EW 7.9 17.9 5.2
∆HS 190.0 32.0 6.4

Table 1: Input parameters in GeV for one low ∆EW point and two low ∆HS points. We take
mt = 173.2 GeV.

collider with
√

s
>∼ 400 GeV. The lightest top squark t̃1 has mass less than 1 TeV: typically below

values generated from radiative natural SUSY models. This leads to a somewhat anomalous
branching fraction BF (b → sγ) ∼ 2.5×10−4, below measured values of (3.55±0.26)×10−4 [42].

A perhaps surprising result from Fig. 1 is that ∆HS values far below the NUHM2/mSUGRA
minimal value of 103 can now be found. In fact, the lowest ∆HS point from teh broad scan has a
value of ∼ 31, or 3% EWFT, even including the effect of high scale logarithms. The parameter
values for this point, labeled as HS1, are also listed in Table 1. There are several features of the
input parameters which lead to low ∆HS. First, the GUT scale value of m2

Hu
= (314 GeV)2, so

our high scale starting point for mHu
is not too far from mZ . Second, the GUT scale gaugino

masses M1 and M2 are ∼ 3M3 ∼ 3 TeV. The RG running of m2
Hu

is governed by

dm2
Hu

dt
=

2

16π2

(
−3

5
g2
1M

2
1 − 3g2

2M
2
2 +

3

10
g2
1S + 3f 2

t Xt

)
(9)

where t = log(Q2/µ2), S = m2
Hu

−m2
Hd

+Tr
[
m2

Q −m2
L − 2m2

U + m2
D + m2

E

]
and Xt = m2

Q(3)+

m2
U(3) + m2

Hu
+ A2

t . At Q = mGUT , the large gaugino masses provide a large negative slope
(green curve of Fig. 2) for m2

Hu
, causing its value to increase while running towards lower mass
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mass (GeV) EW1 HS1 HS2
mg̃ 2042.9 2436.7 2428.8
mũL

3650.7 2991.9 2968.5
mũR

2980.5 3214.8 3191.6
mẽR

2196.3 1763.6 1786.1
mt̃1 879.5 1033.2 892.4
mt̃2 2305.1 1958.3 2394.9
mb̃1

2121.8 1961.4 2418.0
mb̃2

2327.7 2916.1 3495.8
mτ̃1 2219.6 1049.5 1748.3
mτ̃2 3865.8 1467.5 1911.3
mν̃τ

3884.8 1464.9 1911.4
m

W̃2

2802.2 2393.0 2538.3

m
W̃1

192.1 255.5 104.1

m
Z̃4

2810.2 2386.8 2530.3

m
Z̃3

1261.2 1448.0 1513.5

m
Z̃2

187.8 251.2 102.4

m
Z̃1

184.7 247.9 99.3

mA 2759.7 2242.6 3176.4
mh 123.5 123.6 123.1
Ωstd

Z̃1

h2 0.007 0.013 0.003

BF (b → sγ) × 104 2.5 1.8 2.6
BF (Bs → µ+µ−) × 109 3.9 4.5 3.8

σSI(Z̃1p) (pb) 2.9 × 10−10 3.7 × 10−10 2.5 × 10−10

Table 2: Sparticle masses in GeV and observables for one low ∆EW and two low ∆HS points
as in Table 1.
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Figure 2: Plot of a) slope dm2
Hu

/dt vs. Q from model HS1 with ∆HS = 32.

scales. As the parameters evolve, Xt increases due to the increasing squark soft terms so that
the Yukawa coupling term grows (red curve from Fig. 2) and ultimately dominates; then m2

Hu

is driven towards negative values, so that electroweak symmetry is finally broken. The total
slope (black curve) passes through zero around Q ∼ 1010 GeV, indicating large cancelations in
the RG running of m2

Hu
. Ultimately, the value of m2

Hu
(mweak) ∼ −(185 GeV)2 so that both the

starting and ending points of m2
Hu

remain not too far from m2
Z , and hence δm2

Hu
is not too far

from m2
Z , thus fulfilling the most important condition required by low ∆HS.

The actual RG running of gaugino masses and selected soft scalar masses for HS1 are shown
in Fig. 3. In frame a), we see that indeed M1 and M2 start at ∼ 3 TeV values and decrease,
whilst M3 starts small at mGUT and sharply increases. The gaugino mass bouundary conditions
then influence the running of the soft scalar masses in frame b). Most important is the running
of m2

Hu
, which starts at ∼ m2

Z at MGUT , runs up to about the TeV scale at Q ∼ 1010 GeV, and
then is pushed to small negative values by Q ∼ mweak. Also, mU(3) and mQ(3) start small,
which aides the high Q gaugino dominance in the running of m2

Hu
. By Q ∼ mweak, these third

generation squark soft terms have been pushed to the TeV scale. Thus, top squarks are not
too heavy and the radiative corrections Σu

U(t̃1,2) are under control.

3 Results from narrow scan

To hone in on SUGRA19 solutions with low ∆HS, we will impose a narrow, dedicated scan
about our lowest ∆HS solution:

• M1 : 3 − 3.5 TeV, M2 : 2.7 − 3.2 TeV, M3 : 0.8 − 1.3 TeV

• mQ(1, 2) : 0.9 − 1.4 TeV, mU (1, 2) : 2.2 − 2.7 TeV, mD(1, 2) : 1.25 − 1.75 TeV,
mL(1, 2) : 0.4 − 0.9 TeV, mE(1, 2) : 0.7 − 1.2 TeV,
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coding as in Fig. 1.

• mQ(3) : 0 − 0.5 TeV, mU(3) : 0 − 0.5 TeV, mD(3) : 2.7 − 3.2 TeV, mL(3) : 0.1 − 0.5
TeV, mE(3) : 1 − 2 TeV,

• mHu
: 0.05 − 0.55 TeV, mHd

: 2.9 − 3.4 TeV,

• At : −1.3 → −0.8 TeV, Ab : 2.9 − 3.4 TeV, Aτ : 1.7 − 2.2 TeV,

with tan β still 2 − 60 as before.

3.1 SUGRA19 parameters for low ∆HS solutions

The results from our narrow scan are shown in Fig. 1 as red xs, while points that obey B-
constraints are labeled as orange xs. The more focused sampling over lucrative parameter ranges
has produced points with much lower ∆EW values ranging down to ∼ 5, and also solutions with
∆HS as low as 6. The ∆HS = 6.4 solution is presented in Tables 1 and 2 as BM model HS2.
While point HS2 has µ of just 98 GeV, the lightest chargino mass is m

W̃1

= 104.1 GeV, slightly
beyond the limit from LEP2 searches. Since gluino and squark masses are in the several TeV
range, the point is also safe from LHC8 searches. The mass gaps m

W̃1

− m
Z̃1

= 4.8 GeV and
m

Z̃2

− m
Z̃1

= 3.1 GeV so again there will be only tiny visible energy release from the higgsino
decays.

To display the sort of parameter choices leading to low ∆HS , we show in Fig. 4 the values
of ∆EW (blue points) and ∆HS (red/orange points) versus superpotential higgsino mass µ from
the broad (circles) and narrow (x’s) scan. From the plot, we see unambiguously that low
|µ| ∼ mZ is a necessary, but not sufficient, condition to obtain both low ∆EW and low ∆HS .
This translates into the solid prediction that four light higgsinos should lie within reach of a
linear e+e− collider with

√
s > 2|µ|.

In Fig. 5, we show ∆HS and ∆EW vs. mHu
(mGUT ) from the broad and narrow scans over

SUGRA19 parameter space. Here, we see that low ∆EW solutions can be obtained over a large

11
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Figure 5: Plot of ∆HS and ∆EW vs. mHu
(mGUT ) from scan over SUGRA19 model parameter

space. Color coding as in Fig. 1.

range of mHu
(mGUT ) values, as expected from radiative natural SUSY results[22] which allow

for a large cancellation between m2
Hu

(mGUT ) and δm2
Hu

. However, the low ∆HS solutions are
only obtained for mHu

(mGUT ) not too far from mZ , as required by Eq. 7.
In Fig. 6, we show ∆HS and ∆EW vs. M3, where we note that mg̃ ≃ |M3| up to radiative

corrections. Low ∆EW values allow for M3 ∼ 1 − 3 TeV, in accord with LHC searches which
require mg̃

>∼ 1 TeV for not-too-compressed spectra.
In the two frames of Fig. 7, we show ∆HS and ∆EW vs. a) M1/M3 and b) M2/M3, where

all gaugino masses are GUT scale values. The narrow scan has focused on the region around
M3 ∼ 1 TeV, where solutions with ∆HS

<∼ 10−100 can be found. From both frames, we see that
non-universal GUT scale gaugino masses are required for low ∆HS solutions, with ratios in the
range M1/M3 and M2/M3 ∼ 2 − 4 being preferred. As remarked earlier, the large electroweak
gaugino masses provide an initial upwards evolution of m2

Hu
which is later cancelled by the

downward push from the top Yukawa coupling at lower Q values.

3.2 Sparticle mass spectra from low ∆HS solutions

We have already seen from Fig. 4 that very low values of µ ∼ 100 − 300 GeV are required
for both low ∆HS and low ∆EW solutions. This translates into the requirement of four light
higgsino states W̃±

1 and Z̃1,2 with mass ∼ 100− 300 GeV which are difficult to observe at LHC
but should be observable at a linear e+e− collider.

What of gluinos and squarks? We have already seen that mg̃ ∼ 1 − 3 TeV is allowed for
low ∆EW solutions while low ∆HS solutions prefer a lower value mg̃ ∼ 1 TeV. This is due to

12
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Figure 6: Plot of ∆HS and ∆EW vs. M3 (∼ mg̃) from scan over SUGRA19 model parameter
space. Color coding as in Fig. 1.

the fact that too large a value of M3(mGUT ) (and hence a larger physical gluino mass) would
cause an increase in 3rd generation squark masses, which would increase the Xt factor in the
m2

Hu
RGE, and cause a larger value of δm2

Hu
to ensue.

In Fig. 8, we show ∆HS and ∆EW values versus min[mq̃], where the min is over all physical
squark masses of the first two generations. While low ∆EW solutions allow for a broad range
of mq̃ ∼ 1− 5 TeV, the low ∆HS solutions tend to favor mq̃ ∼ 2− 3 TeV, beyond current LHC
reach.

In Fig. 9, we show ∆HS and ∆EW versus top squark masses a) mt̃1 and b) mt̃2 . The lowest
∆HS solutions are found for mt̃1 ∼ 1 TeV and mt̃2 ∼ 2 TeV. These values are typically 1-2 TeV
lower than results from RNS models but still beyond most LHC reach projections for third
generation squark detection.

In Fig. 10, we show ∆HS and ∆EW vs. mA. Here, we see that the lowest ∆ solutions favor
mA (and hence mH and mH±) in the 2-4 TeV range, usually well beyond any projected LHC
or ILC reach.

3.3 Low ∆HS solutions and B-physics constraints

In Fig. 11, we show values of ∆EW and ∆HS vs. BF (Bs → µ+µ−). The recent LHCb
collaboration measurement requires[44] the branching fraction of BF (Bs → µ+µ−) = 3.2+1.5

−1.2 ×
10−9, in accord with the SM prediction of (3.2 ± 0.2) × 10−9. In supersymmetric models, this
flavor-changing decay occurs through pseudoscalar Higgs A exchange[41], and the contribution

to the branching fraction from SUSY is proportional to (tan β)6

m4

A

. The decay is most constraining

at large tanβ and at low mA. In the case of low ∆HS solutions with lower tanβ and heavier
mA, we find the bulk of solutions to lie within the newly measured error bars although some
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Figure 7: Plot of ∆HS and ∆EW vs. M1/M3 and M2/M3 from scan over SUGRA19 model
parameter space. Color coding as in Fig. 1.
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Figure 8: Plot of ∆HS and ∆EW vs. min(mq̃) from scans over SUGRA19 model parameter
space. Color coding as in Fig. 1.

solutions with large ∆HS and ∆EW will be excluded.
In Fig. 12, we show ∆EW and ∆HS vs. BF (b → sγ). We also show the measured central

value and both 1 and 3-σ error bars. SUSY contributions to the b → sγ decay rate come mainly
from chargino-stop loops and the W-charged Higgs loops, and so are large when these particles
are light and when tanβ is large[40]. In the case shown here, the low ∆HS solutions which
require third generation squarks somewhat heavier than generic Natural SUSY but somewhat
lighter than radiative Natural SUSY, we find the bulk of low ∆HS solutions to lie a couple
standard deviations below the measured value.

3.4 Low ∆HS solutions and dark matter

In this section, we plot out results of the relic neutralino abundance from our scan over
SUGRA19 parameter space. We use the IsaReD[46] relic density calculator from Isajet. Our
results are shown in Fig. 13 frame a), where we plot ∆HS and ∆EW vs. Ω

Z̃1

h2. For comparison,
we also show the location of the WMAP9-measured relic density of dark matter (green dashed
line). Both the low ∆HS and ∆EW solutions populate a band located well below the measured
abundance. This reflects the fact that the low ∆HS,EW solutions all have low µ so that the Z̃1 is
dominantly higgsino-like; these solutions enjoy an ample annihilation cross section into WW ,
ZZ etc. in the early universe. Thus, the lowest ∆HS,EW solutions are typically suppressed by
factors of 10 − 50 below the measured dark matter abundance. Clearly, additional physics is
needed in the early universe to gain accord with experiment. One suggestion– the presence
of late-decaying scalar fields– can either augment or diminish the relic abundance from its
standard value[47]. Another possibility– mixed neutralino plus axion dark matter– is favored
by SUSY models with a standard underabundance of neutralinos since thermal production of
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Figure 9: Plot of ∆HS and ∆EW vs. mt̃1 and mt̃2 from scans over SUGRA19 model parameter
space. Color coding as in Fig. 1.
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axinos and thermal/non-thermal production of saxions followed by decays to SUSY particles
can augment the neutralino abundance[48] (depending on additional Peccei-Quinn parameters
and the re-heat temperature TR after inflation). Any remaining gap in the generated neutralino
abundance relative to the measured abundance can be made up of axions.

In Fig. 13b), we plot the rescaled spin-independent neutralino-proton scattering cross section
(Ωstd

Z̃1

h2/0.11)σSI(Z̃1p) from IsaReS[49]. The prefactor accounts for the possibility that the local

dark matter abundance may be well below the value assumed from neutralino-only CDM. For
reference, we show the latest Xe-100 limit (dashed green line) for m

Z̃1

= 150 GeV. The rescaled
direct detection (DD) cross section is below current sensity by between 1-2 orders of magnitude.
This is lower than even DD projections from radiative natural SUSY[50] since in that case the
Z̃1 is mainly higgsino but with a non-negligible gaugino component. Since the Z̃1 − Z̃1 − h
coupling depends on a product of gaugino-higgsino components, the RNS case never gets too
small. In our current case, with non-universal gaugino masses, the Z̃1 can be a much more pure
higgsino state, and consequently can have a significantly lower DD rate.

4 Conclusions:

In previous studies, the radiative natural SUSY model has emerged as a way to reconcile low
EWFT with lack of SUSY signals at LHC8 and the presence of a light Higgs scalar with mass
mh ∼ 125 GeV. The RNS model cannot be realized within the restrictive mSUGRA/CMSSM
framework, but can be realized within the context of NUHM2 models (which depend on 6 input
parameters) and where µ can be a free input value. In RNS models, ∆EW as low as ∼ 10 can
be generated while ∆HS as low as 103 can be found.

In this study, we have implemented scans over the most general minimal flavor- and minimal
CP -violating GUT scale SUSY model– SUGRA19– with two goals in mind. Our first goal was
to check if the additional freedom of 13 extra parameters allows for much lower ∆EW solutions.
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In previous work– by proceeding from mSUGRA to NUHM2 models– a reduction in the min
of ∆EW of at least 10 was found[27, 22]. In the present work, we do not find any substantial
reduction in the minimal ∆EW value by proceeding from the NUHM2 model to SUGRA19.
The parameter freedom of NUHM2 appears sufficient to minimize ∆EW to its lowest values of
∼ 5 − 10.

Our second goal was to check whether the additional parameter freedom can improve on
the high scale EWFT parameter ∆HS. In this regard, we find improvements by factors ranging
up to ∼ 150! In order to generate low values of ∆HS, one must generate µ ∼ 100− 300 GeV as
usual, But also one must start with m2

Hu
∼ m2

Z at the GUT scale, and then generate relatively
little change δm2

Hu
during evolution from mGUT to mweak. Small values of δm2

Hu
can be found

if one begins with electroweak gaugino masses M1,2 ∼ 3M3 at the GUT scale so that gaugino-
induced RG evolution dominates at high Q ∼ mGUT . Then at lower Q values approaching the
weak scale, top-Yukawa terms dominate the running of m2

Hu
, leading to broken electroweak

symmetry, but also to not much net change in m2
Hu

during its evolution from mGUT to mweak.

The solutions with low ∆HS are characterized by the presence of four light higgsinos W̃±

1 and
Z̃1,2 similar to RNS models. However, in contrast to RNS models, the third generation squarks

tend to be lighter (although not as light as generic natural SUSY which favors mt̃1,2

<∼ 500
GeV). The lighter third generation squarks lead to significant SUSY contributions to the decay
b → sγ, and seem to be disfavored by the measured value of this branching fraction. In the case
of low ∆HS models, the lightest neutralino is more higgsino-like than in RNS models, leading
to even lower values of predicted relic density and low direct detection rates. The remaining
CDM abundance may be augmented by scalar field or axino/saxion production and decay in
the early universe, and in the latter case, the additional presence of axions is expected.
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