Supersymmetry at the LHC

Howard Baer Florida State University

- \star SUSY at LHC
 - SUSY models
 - sparticle production
 - sparticle decay
 - event generation
 - searches at LHC
 - precision measurements

Models of SUSY breaking

- ★ Spontaneous breaking of SUSY phen. inconsistent within MSSM
- ★ Hidden sector models (HS)
- ★ HS is arena for SUSY breaking; how to communicate SUSY breaking to visible sector (VS)?
 - gravity mediation: supergravity (SUGRA) and local SUSY: minimal messenger sector: $m_{3/2} \sim$ TeV: LSP=bino/higgsino/wino/gravitino?
 - gauge mediation (GMSB): introduce messenger sector fields as intermediary between HS and VS: $m_{3/2} \ll$ TeV: LSP=gravitino
 - anomaly mediation (AMSB): $m_{3/2}$ > TeV: LSP=wino
- ★ role of extra dimensions? compactification? sequestered sector and AMSB; gaugino mediation; GUTs; · · ·

Calculate spectra using Isajet/Isasugra

★ MSSM: weak scale inputs (no RGE running)

★ mSUGRA

- $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- non-universal SUGRA
- ★ gauge mediated SUSY breaking (GMSB)
 - Λ , M, n_5 , $\tan\beta$, $sign(\mu)$, C_{grav}
 - non-minimal GMSB
- ★ anomaly-mediated SUSY breaking (AMSB)
 - $m_0, m_{3/2}, \tan\beta, sign(\mu)$
 - non-minimal AMSB
- ★ mixed modulus-AMSB
 - α , $m_{3/2}$, $\tan \beta$, $sign(\mu)$, modular weights

Sparticle mass spectra

- \star Mass spectra codes
- ★ RGE running: $M_{GUT} \rightarrow M_{weak}$
 - Isajet (HB, Paige, Protopopescu, Tata)
 - $* \geq 7.72$: Isatools
 - SuSpect (Djouadi, Kneur, Moultaka)
 - SoftSUSY (Allanach)
 - Spheno (Porod)

★ Website: http://kraml.home.cern.ch/kraml/comparison/

Results of χ^2 fit using τ data for a_{μ} :

HB, C. Balazs: JCAP 0305, 006 (2003)

Parton model of hadronic reactions

For a hadronic reaction,

$$A + B \rightarrow c + d + X,$$

where c and d are superpartners and X represents assorted hadronic debris, we have an associated subprocess reaction

$$a + b \rightarrow c + d,$$

whose cross section can be computed using the Lagrangian for the MSSM. To obtain the final cross section, we must convolute the appropriate subprocess production cross section $d\hat{\sigma}$ with the parton distribution functions:

$$d\sigma(AB \to cdX) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, Q^2) \ f_{b/B}(x_b, Q^2) \ d\hat{\sigma}(ab \to cd).$$

where the sum extends over all initial partons a, b whose collisions produce the final state c + d.

Parton Distribution Functions (PDFs)

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Calculating subprocess cross sections/decay rates in QFT

- The fundamental calculable object in QM is the $\mathit{amplitude}~\mathcal{M}$ for a process to occur
- A pictorial representation of $\mathcal M$ is given by a $\mathit{Feynman}\ \mathit{diagram}$
- Feynman rules for many theories can be found in standard texts: *e.g.* Peskin& Schroeder, *Introduction to Quantum Field Theory*
- In the MSSM, an additional complication occurs due to presence of *Majorana* spinors
- Methods for handling these given *e.g.* in *Weak Scale Supersymmetry* (HB, X. Tata), or book by M. Drees, Godbole& Roy
- $\bullet\,$ total amplitude ${\cal M}$ is sum of all different ways a process can occur
- \mathcal{M} is a complex number; $|\mathcal{M}|^2$ gives probability
- must normailze and sum (integrate) over all momentum configurations to gain cross section, usually in *femtobarns*:

Calculating subprocess cross sections/decay rates in QFT

$$d\hat{\sigma} = \frac{1}{2\hat{s}} \frac{1}{(2\pi)^2} \int \frac{d^3 p_c}{2E_c} \frac{d^3 p_d}{2E_d} \delta^4 (p_a + p_b - p_c - p_d) \cdot F_{\text{color}} F_{\text{spin}} \sum |\mathcal{M}|^2,$$

- Must sum (integrate) over all final state momentum configurations
- May be done analytically for simple processes $e.g. \ 2 \rightarrow 2$
- Usually done using Monte Carlo method for $n\geq 3$
- Monte Carlo well suited for adding on particle decays so one has really $2 \rightarrow n$ processes where n can be very large
- Convolution of subprocess cross section with PDFs must be done numerically, since PDFs distributed as *subroutines*

Chargino-neutralino production

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Slepton pair production

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Gluino and squark pair production

Production at Tevatron

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Production at LHC

Squark decays

$$\begin{split} \widetilde{u}_L & \to & u\widetilde{Z}_i, \ d\widetilde{W}_j^+, \ u\widetilde{g}, \\ \widetilde{d}_L & \to & d\widetilde{Z}_i, \ u\widetilde{W}_j^-, \ d\widetilde{g}, \\ \widetilde{u}_R & \to & u\widetilde{Z}_i, \ u\widetilde{g}, \\ \widetilde{d}_R & \to & d\widetilde{Z}_i, \ d\widetilde{g}. \end{split}$$

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Slepton decays

$$\tilde{e}_L \to e\widetilde{Z}_i, \ \nu_e\widetilde{W}_j^-,
 \tilde{\nu}_e \to \nu_e\widetilde{Z}_i, \ e\widetilde{W}_j^+,
 \tilde{e}_R \to e\widetilde{Z}_i.$$

Chargino decays

$$\begin{split} \widetilde{W}_{j} &\to W\widetilde{Z}_{i}, \ H^{-}\widetilde{Z}_{i}, \\ &\to \widetilde{u}_{L}\overline{d}, \ \overline{\widetilde{d}}_{L}u, \ \widetilde{c}_{L}\overline{s}, \ \overline{\widetilde{s}}_{L}c, \ \widetilde{t}_{1,2}\overline{b}, \ \widetilde{b}_{1,2}t, \\ &\to \widetilde{\nu}_{e}\overline{e}, \ \overline{\widetilde{e}}_{L}\nu_{e}, \ \widetilde{\nu}_{\mu}\overline{\mu}, \ \overline{\widetilde{\mu}}_{L}\nu_{\mu}, \ \widetilde{\nu}_{\tau}\overline{\tau}, \overline{\widetilde{\tau}}_{1,2}\nu_{\tau}, \text{ and} \\ &\widetilde{W}_{2} &\to Z\widetilde{W}_{1}, \ h\widetilde{W}_{1}, \ H\widetilde{W}_{1} \text{ and } A\widetilde{W}_{1}. \end{split}$$

Charginos may decay to a lighter neutralino via

$$\widetilde{W}_{j} \to \widetilde{Z}_{i} + f \overline{f}' , \qquad (1)$$

$$\underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} = \underbrace{\widetilde{W}_{1}}_{\widetilde{Z}_{1}} \underbrace{\widetilde{W}_{1}}_{\widetilde{U}_{e}} = \underbrace{\widetilde{W}_{1}}_{\widetilde{Z}_{1}} \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} = \underbrace{\widetilde{W}_{1}}_{\widetilde{Z}_{1}} \underbrace{\widetilde{V}_{e}}_{\widetilde{V}_{e}} = \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} \underbrace{\widetilde{V}_{1}}_{\widetilde{V}_{e}} = \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}} = \underbrace{\widetilde{W}_{1}}_{\widetilde{V}_{e}}$$

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Neutralino decays

$$\begin{aligned} \widetilde{Z}_i &\to W \widetilde{W}_j, \ H^- \widetilde{W}_j, \ Z \widetilde{Z}_{i'}, \ h \widetilde{Z}_{i'}, \ H \widetilde{Z}_{i'}, \ A \widetilde{Z}_{i'} \\ &\to \tilde{q}_{L,R} \bar{q}, \ \overline{\tilde{q}}_{L,R} q, \ \tilde{\ell}_{L,R} \bar{\ell}, \ \overline{\tilde{\ell}}_{L,R} \ell, \ \tilde{\nu}_\ell \bar{\nu}_\ell, \ \overline{\tilde{\nu}}_\ell \nu_\ell. \end{aligned}$$

If 2-body modes are closed, then the neutralino can decay via

Howie Baer, SUSY at LHC, lecture 2: Karlsruhe, July 24, 2007

Decays of SUSY Higgs boson h

- $h \rightarrow u\bar{u}, \ d\bar{d}, \ s\bar{s}, \ c\bar{c}, \ b\bar{b}, \ e\bar{e}, \ \mu\bar{\mu}, \ \tau\bar{\tau}$
- $h \to \widetilde{Z}_i \widetilde{Z}_{i'}, \ \widetilde{W}_j^+ \widetilde{W}_{j'}^-, \ \widetilde{f}\overline{\widetilde{f}}$
- $h \to AA$

where i, i' = 1 - 4 and j, j' = 1, 2.

Also

- $h \to W f \bar{f}' / Z f \bar{f}$
- $h \to gg, \ \gamma\gamma, \ Z\gamma$

Decays of SUSY Higgs boson H

- $H \rightarrow u \bar{u}, \ d\bar{d}, \ s\bar{s}, \ c\bar{c}, \ b\bar{b}, \ t\bar{t}, \ e\bar{e}, \ \mu\bar{\mu}, \ \tau\bar{\tau}$
- $H \rightarrow WW, ZZ$
- $H \to \widetilde{Z}_i \widetilde{Z}_{i'}, \ \widetilde{W}_j^+ \widetilde{W}_{j'}^-, \ \widetilde{f}\overline{\widetilde{f}}$
- $H \to hh$, AA, H^+H^- , AZ
- $H \to gg, \ \gamma\gamma, \ Z\gamma$

where i, i' = 1 - 4 and j, j' = 1, 2.

Decays of SUSY Higgs boson A

- $A \rightarrow u\bar{u}, \ d\bar{d}, \ s\bar{s}, \ c\bar{c}, \ b\bar{b}, \ t\bar{t}, \ e\bar{e}, \ \mu\bar{\mu}, \ \tau\bar{\tau}$
- $A \to \widetilde{Z}_i \widetilde{Z}_{i'}, \ \widetilde{W}_j^+ \widetilde{W}_{j'}^-, \ \widetilde{f}\overline{\widetilde{f}}$
- $A \rightarrow hZ$
- $A \rightarrow gg, \ \gamma\gamma$

where i, i' = 1 - 4 and j, j' = 1, 2.

Decays of SUSY Higgs boson H^+

- $H^+ \to u\bar{d}, \ c\bar{s}, \ t\bar{b}, \ \nu_e\bar{e}, \ \nu_\mu\bar{\mu}, \ \nu_\tau\bar{\tau}$
- $H^+ \to \widetilde{Z}_i \widetilde{W}_j^+, \ \tilde{f} \overline{\tilde{f}}'$
- $H^+ \to hW$

where i, i' = 1 - 4 and j, j' = 1, 2.

Decay of top to SUSY?

- $t \to bW^+$
- $t \to bH^+$
- $t \to \tilde{t}_{1,2} \widetilde{Z}_i$, $\tilde{b}_{1,2} \widetilde{W}_j$

where i = 1 - 4 and j = 1, 2.

Decays to gravitino?

- $\widetilde{Z}_1 \to \gamma \tilde{G}$
- $\widetilde{Z}_1 \rightarrow \widetilde{G}+$ (h, H, A or Z)
- $\tilde{f} \to f \tilde{G}$

Couplings can be extracted from SUGRA Lagrangian:

see e.g. Weak Scale Supersymmetry

Sparticle cascade decays

A realistic picture of what SUSY matter looks like at LHC

- ★ Counting different flavor states (which are potentially measurable), there are well over 1000 subprocess reactions expected at LHC from the MSSM
- \star on average, each sparticle has 5-20 decay modes
- **\star** rough estimate of distinct SUSY $2 \rightarrow n$ processes:
 - $\sim 100 \times 10 \times 10 \sim 10^5$
 - this is actually a gross underestimate since each daughter of a produced sparticle has multiple decay modes, and so on...
- \star the way forward: Monte Carlo program
 - calculate $\mathit{all}\xspace$ prod'n cross sections: generate according to relative weights
 - calculate all branching fractions, and generate decays according to them
 - interface with parton shower, hadronization, underlying event
 - computer generated events should look something like what we would expect from the MSSM at the LHC

Event generation for sparticles

Event generations for SUSY

- ★ Isajet (HB, Paige, Protopopsecu, Tata)
 - IH, FW-PS, n-cut Pomeron UE
- ★ Pythia (Sjöstrand, Lönnblad, Mrenna)
 - SH, FW-PS, multiple scatter UE, SUSY at low $\tan\beta$ only
- ★ Herwig (Marchesini, Webber, Seymour, Richardson,...)
 - CH, AO-PS, Phen. model UE, Isawig
- ★ SUSYGEN (Ghodbane, Katsanevas, Morawitz, Perez)
 - mainly for e^+e^- ; interfaces to Pytha

★ CompHEP, CalcHEP, Madgraph: for automatic Feynman diagram evaluation

Briefly: particle interactions with detector

SUSY scattering event: Isajet simulation

$$\begin{split} & m_0 = 100 \; \text{GeV}, \, m_{1/2} = 300 \; \text{GeV}, \, \tan\beta = 2, \, A_0 = 0, \, \mu < 0, \\ & m(\tilde{q}) = 686 \; \text{GeV}, \, m(\tilde{g}) = 766 \; \text{GeV}, \, m(\tilde{\chi}^0_{\;\;2}) = 257 \; \text{GeV}, \\ & m(\tilde{\chi}^0_{\;\;1}) = 128 \; \text{GeV}. \end{split}$$

Charged particles with $p_t > 2$ GeV, $|\eta| < 3$ are shown; neutrons are not shown; no pile up events superimposed.

- \star sparticle production
 - generally, $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$ $\tilde{q}\tilde{q}$ dominate at LHC if $m_{\tilde{g},\tilde{q}} \stackrel{<}{\sim} 1$ TeV
- \star sparticle decays
- \star event generation
 - combine numerous production processes with multi-step sparticle cascade decays, initial/final state parton showering, hadronization and a modeling of underlying event, and hopefully we get a pretty good picture of what production of SUSY matter will look like in the environment of an LHC detector