Supersymmetric Dark Matter:

Direct, Indirect and Collider Searches

Howard Baer University of Oklahoma OUTLINE

- \star The Standard Model
- \star Inconsistencies
- ★ Supersymmetry
- ★ Dark matter (DM)
 - neutralino, axion/axino, gravitino
- \star The Hunt for DM at LHC
- \star direct DM searches
- \star indirect DM searches

The Standard Model of Particle Physics

 \star gauge symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow g$, W^{\pm} , Z^0 , γ

 \star matter content: 3 generations quarks and leptons

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} u_{R}, d_{R}; \begin{pmatrix} \nu \\ e \end{pmatrix}_{L}, e_{R}$$

\star Higgs sector \Rightarrow spontaneous electroweak symmetry breaking:

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi_0 \end{array}\right)$$

 \star \Rightarrow massive W^{\pm}, Z^{0} , quarks and leptons

$$\star \mathcal{L} = \mathcal{L}_{gauge} + \mathcal{L}_{matter} + \mathcal{L}_{Yuk.} + \mathcal{L}_{Higgs}$$
: 19 parameters

 \star good-to-excellent description of (almost) *all* accelerator data!

(1)

(2)

Shortcomings of SM

Data

- \star neutrino masses and mixing
- ★ baryogenesis (matter anti-matter asymmetry)
- \star cold dark matter
- ★ dark energy

Theory

- **\star** quadratic divergences in scalar sector \Rightarrow fine-tuning
- \star origin of generations
- \star explanation of masses/ mixing angles
- ★ origin of gauge symmetry/ quantum numbers
- \star unification with gravity

The supersymmetry alternative

Supersymmetry: bosons \Leftrightarrow fermions

- **\star** SUSY is a *space-time* symmetry!
- ★ space-time $x^{\mu} \Rightarrow (x^{\mu}, \theta_i) \ i = 1, \cdots, 4$ superspace
- ★ fields $\psi \Rightarrow \hat{\phi} \ni (\phi, \ \psi)$ superfields
- ★ gauge fields $A^{\mu} \Rightarrow \hat{W} \ni (\lambda, A^{\mu})$ gauge superfields
- ★ superfield formalism ⇒ general form for Lagrangian of (globally) supersymmetric gauge theory: quadratic divergences cancel!
- \star SUSY can be broken by *soft* SUSY breaking terms: maintain cancellation of quadratic divergences

Weak Scale Supersymmetry

HB and X. Tata Spring, 2006; Cambridge University Press

- ★ Part 1: superfields/Lagrangians
 - 4-component spinor notation for exp'ts
 - master Lagrangian for SUSY gauge theories
- ★ Part 2: models/implications
 - MSSM, SUGRA, GMSB, AMSB, ···
 - dark matter density/detection
- \star Part 3: SUSY at colliders
 - production/decay/event generation
 - collider signatures
 - R-parity violation

Minimal Supersymmetric Standard Model (MSSM)

- ★ Adopt gauge symmetry of Standard Model
 - spin $\frac{1}{2}$ gaugino for each SM gauge boson
- ★ SM fermions ∈ chiral scalar superfields: ⇒ scalar partner for each SM fermion helicity state
 - electron $\Leftrightarrow \tilde{e}_L$ and \tilde{e}_R
- \star two Higgs doublets to cancel triangle anomalies
- \star add all admissible soft SUSY breaking terms
- ★ resultant Lagrangian has 124 parameters!
- ★ Lagrangian yields mass eigenstates, mixings, Feynman rules for scattering and decay processes
- ★ predictive model!

Supergravity (SUGRA)

 $\bigstar \ e^{i\bar{\alpha}Q}$ with $\alpha(x):\ local\ {\rm SUSY}\ {\rm transformation}$

- forces introduction of spin 2 graviton and spin $\frac{3}{2}$ gravitino
- resultant theory \Rightarrow General Relativity in classical limit!
- ★ rules for Lagrangian in supergravity gauge theory: Cremmer et al. (1983)
- \star fertile ground: supergravity \cup grand unification: LE limit of superstring?
- ★ minimal supergravity model (mSUGRA)

$$\star$$
 m₀, m_{1/2}, A₀, tan β , sign(μ)

- $m_0 = \text{mass of all scalars at } Q = M_{GUT}$
- $m_{1/2} = mass of all gauginos at <math>Q = M_{GUT}$
- $A_0 = \text{trilinear soft breaking parameter at } Q = M_{GUT}$
- $\tan\beta = \text{ratio of Higgs vevs}$
- $\mu = SUSY Higgs$ mass term; magnitude determined by REWSB!

Some successes of SUSY GUT theories

- ★ SUSY divergence cancellation maintains hierarchy between GUT scale $Q = 10^{16}$ GeV and weak scale Q = 100 GeV
- \star gauge coupling unification!

Gauge coupling evolution

Howie Baer, Oklahoma State University colloquium, April 16, 2009

Some successes of SUSY GUT theories

- \star SUSY divergence cancellation maintains hierarchy between GUT scale $Q=10^{16}~{\rm GeV}$ and weak scale $Q=100~{\rm GeV}$
- ★ gauge coupling unification!
- ★ Lightest Higgs mass $m_h \stackrel{<}{\sim} 135$ GeV as indicated by radiative corrections!

Precision electroweak data and the Higgs mass:

S. Heinemeyer et al.

Some successes of SUSY GUT theories

★ SUSY divergence cancellation maintains hierarchy between GUT scale $Q = 10^{16}$ GeV and weak scale Q = 100 GeV

- ★ gauge coupling unification!
- \star Lightest Higgs mass $m_h \stackrel{<}{\sim} 130$ GeV as indicated by radiative corrections!
- ★ radiative breaking of EW symmetry if $m_t \sim 100 200$ GeV!

Soft term evolution and radiative EWSB

Howie Baer, Oklahoma State University colloquium, April 16, 2009

Some successes of SUSY GUT theories

- ★ SUSY divergence cancellation maintains hierarchy between GUT scale $Q = 10^{16}$ GeV and weak scale Q = 100 GeV
- ★ gauge coupling unification!
- \star Lightest Higgs mass $m_h \stackrel{<}{\sim} 130$ GeV as indicated by radiative corrections!
- ★ radiative breaking of EW symmetry if $m_t \sim 100 200$ GeV!
- \star dark matter candidate: lightest neutralino $ilde{Z}_1$
- ★ stablize neutrino see-saw scale vs. weak scale
- ★ SO(10) SUSY GUT: baryogenesis via leptogenesis
- \star can give dark energy via CC Λ (but need huge fine-tuning...)
 - SUGRA = low energy limit of superstring?
 - stringy multiverse: anthropic selection of small CC?

Evidence for dark matter in the universe

- ★ binding of galactic clusters (Zwicky, 1930s)
- \star galactic rotation curves
- \star large scale structure formation
- **★** inflation $\Rightarrow \Omega = \rho/\rho_c = 1$
- ★ gravitational lensing
- ★ anisotropies in cosmic MB (WMAP)
- \star surveys of distant galaxies via SN (DE)
- \star Big Bang nucleosynthesis
 - $\Omega_{\Lambda} \simeq 0.7$
 - $\Omega_{CDM} \simeq 0.25$
 - $\Omega_{baryons} \simeq 0.045$ (dark baryons ~ 0.040

 $\Omega_{\mu} \sim 0.005$

Dark matter versus dark energy

SUSY dark matter

- ★ R-parity conservation \Rightarrow conserved B and L \Rightarrow proton stability
 - R(particle) = 1; R(sparticle) = -1
- **\star** Naturally occurs in SO(10) SUSY GUT theories
- ★ Some consequences:
 - Sparticles are produced in pairs
 - Sparticles decay to other sparticles
 - Lightest SUSY particle (LSP) is absolutely stable (good candidate for dark matter)
- ★ LSP must be charge, color neutral (bound on cosmological relics)
- \star Sneutrino would have been detected in direct detection experiments
- \star lightest neutralino \tilde{Z}_1 is LSP in wide range of models
- $\star \tilde{Z}_1$ is weakly interacting, massive particle (WIMP)

Calculating the relic density of neutralinos

- \bigstar At very high T, neutralinos in thermal equilibrium with cosmic soup
- ★ As universe expands and cools, expansion rate exceeds interaction rate (freeze-out)
- \star number density is governed by Boltzmann eq. for FRW universe

•
$$dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

•
$$\Omega_{\widetilde{Z}_1} h^2 = \frac{s_0}{\rho_c/h^2} \left(\frac{45}{\pi g_*}\right)^{1/2} \frac{x_f}{m_{Pl}} \frac{1}{\langle \sigma v \rangle}$$

•
$$\Omega_{CDM}h^2 \sim 0.1 \Rightarrow \langle \sigma v \rangle \sim 0.9 \text{ pb!}$$

•
$$\langle \sigma v \rangle = \pi \alpha^2 / 8m^2 \Rightarrow m \sim 100 \text{ GeV}$$

• "The WIMP miracle!": cosmic motivation for new physics at weak scale

★ SUSY: 1722 annihilation/co-annihilation reactions; 7618 Feynman diagrams

★ IsaReD program (HB, A. Belyaev , C. Balazs)

Results of χ^2 fit using τ data for a_{μ} :

HB, C. Balazs: JCAP 0305, 006 (2003)

Axions

 \star PQ solution to strong CP problem in QCD

- ★ pseudo-Goldstone boson from PQ breaking at scale $f_a \sim 10^9 10^{12}$ GeV
- ★ non-thermally produced via vacuum mis-alignment as *cold* DM

•
$$m_a \sim \Lambda_{QCD}^2 / f_a \sim 10^{-6} - 10^{-1} eV$$

•
$$\Omega_a h^2 \sim \frac{1}{2} \left[\frac{6 \times 10^{-6} eV}{m_a} \right]^{7/6} h^2$$

- astro bound: stellar cooling $\Rightarrow m_a < 10^{-1} eV$
- a couples to EM field: $a \gamma \gamma$ coupling (Sikivie)
- axion microwave cavity searches

Axion microwave cavity searches

★ ongoing searches: ADMX experiment

- Livermore \Rightarrow U Wash.
- Phase I: probe KSVZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- Phase II: probe DFSZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- beyond Phase II:
 probe higher values m_a

Axions + SUSY \Rightarrow Axino \tilde{a} dark matter

- axino is spin- $\frac{1}{2}$ element of axion supermultiplet (*R*-odd; can be LSP)
- $m_{\tilde{a}} \mod \text{dependent}$: keV $\rightarrow \text{GeV}$
- $\widetilde{Z}_1 \to \widetilde{a}\gamma$
- non-thermal \tilde{a} production via Z_1 decay:
- axinos inherit neutralino number density
- $\Omega_{\tilde{a}}^{NTP}h^2 = \frac{m_{\tilde{a}}}{m_{\tilde{Z}_1}}\Omega_{\tilde{Z}_1}h^2$:

Thermally produced axinos

★ If $T_R < f_a$, then axinos never in thermal equilibrium in early universe

- \star Can still produce \tilde{a} thermally via radiation off particles in thermal equilibrium
- ★ Brandenberg-Steffen calculation:

$$\Omega_{\tilde{a}}^{TP}h^2 \simeq 5.5g_s^6 \ln\left(\frac{1.108}{g_s}\right) \left(\frac{10^{11} \text{ GeV}}{f_a/N}\right)^2 \left(\frac{m_{\tilde{a}}}{0.1 \text{ GeV}}\right) \left(\frac{T_R}{10^4 \text{ GeV}}\right) \quad (3)$$

Gravitinos: spin- $\frac{3}{2}$ partner of graviton

• gravitino problem in generic SUGRA models: overproduction of \hat{G} followed by late \tilde{G} decay can destroy successful BBN predictons: upper bound on T_R

(see Kawasaki, Kohri, Moroi, Yotsuyanagi; Cybert, Ellis, Fields, Olive)

Gravitinos as dark matter: again the gravitino problem

• neutralino production in generic SUGRA models: followed by late time $\widetilde{Z}_1 \rightarrow \widetilde{G} + X$ decays can destroy successful BBN predictons:

Gravitino dark matter: if one can avoid gravitino problem

★ $m_{\tilde{G}} = F/\sqrt{3}M_* \sim \text{TeV}$ in Supergravity models

- if \tilde{G} is LSP, then calculate NLSP abundance as a thermal relic: $\Omega_{NLSP}h^2$
- $\widetilde{Z}_1 \to h \widetilde{G}, \ Z \widetilde{G}, \ \gamma \widetilde{G} \text{ or } \widetilde{\tau}_1 \to \tau \widetilde{G} \text{ possible}$
 - * lifetime $\tau_{NLSP} \sim 10^4 10^8 \, \mathrm{sec}$
 - * also produce \tilde{G} thermally (depends on re-heat temp. T_R)
 - * DM relic density is then $\Omega_{\tilde{G}} = \frac{m_{\tilde{G}}}{m_{NLSP}} \Omega_{NLSP} + \Omega_{\tilde{G}}^{TP}$
 - * Feng et al.; Ellis et al.; Brandenberg+Steffen; Buchmuller et al.
- \tilde{G} undetectable via direct/indirect DM searches
- unique collider signatures are possible:
 - * $\tilde{\tau}_1$ =NLSP: stable charged tracks
 - * can collect NLSPs in e.g. water (slepton trapping)
 - * monitor for $NLSP \rightarrow G$ decays

Production of sparticles at CERN LHC

Sparticle cascade decays

Event generation for sparticles

Isajet v7.79 for sparticle event generation

- ★ Isajet (1979), by F. Paige and S. Protopopescu
- ★ Isajet 7.0 (1993) -7.75: FP, SP, HB and X. Tata
 - Isasugra subprogram: SUGRA models (and others)⇒ sparticle masses, mixings, decay rates
- \star SUSY and SM event generation for hadron colliders
- $\star e^+e^-$ colliders
 - polarized beams
 - bremsstrahlung/ beamstrahlung
- ★ IsaTools: $\Omega_{\widetilde{Z}_1}h^2$, $(g-2)_{\mu}$, $BF(b \to s\gamma)$, $BF(B_s \to \mu^+\mu^-)$, $\sigma(\widetilde{Z}_1p)$
- ★ Les Houches event output: 7.78

Simulated sparticle production event at LHC

$e^+e^- \to \widetilde{W}_1^+ \widetilde{W}_1^- \to (q\bar{q}'\widetilde{Z}_1) + (e\bar{\nu}_e\widetilde{Z}_1)$ at linear collider

Sparticle reach of all colliders with relic density

HB, Belyaev, Krupovnickas, Tata: JHEP 0402, 007 (2004)

Early SUSY discovery at LHC with just 0.1 fb⁻¹?

- - dead regions
 - "hot" cells
 - cosmic rays
 - calorimeter mis-measurement
 - beam-gas events
- Can we make early discovery of SUSY at LHC without $\not\!\!\!E_T$?
- Expect SUSY events to be rich in jets, *b*-jets, isolated ℓ s, τ -jets,....
- These are *detectable*, rather than inferred objects
- Answer: YES! See HB, Prosper, Summy, arXiv:0801.3799

D0 saga with missing E_T

Simple cuts: ≥ 4 jets plus isolated leptons

Cuts C1' plus $\geq 2 OS/SF \ell$

Precision measurements at LHC: Atlas and CMS

- $M_{eff} = E_T + E_T(j1) + \dots + E_T(j4)$ sets overall $m_{\tilde{g}}, m_{\tilde{q}}$ scale
- $m(\ell \bar{\ell}) < m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ mass edge
- $m(\ell \bar{\ell})$ distribution shape
- combine $m(\ell \bar{\ell})$ with jets to gain $m(\ell \bar{\ell} j)$ mass edge: info on $m_{\tilde{q}}$
- further mass edges possible *e.g.* $m(\ell \bar{\ell} j j)$
- Higgs mass bump $h \to b\bar{b}$ likely visible in $\not\!\!E_T + jets$ events
- in favorable cases, may overconstrain system for a given model
- ★ methodology very p-space dependent
- \star some regions are very difficult *e.g.* HB/FP

International linear e^+e^- collider (ILC)

★ A linear e^+e^- collider with $\sqrt{s} = 0.5 - 1$ TeV is highest priority project for HEP beyond LHC! Why?

- All beam energy ⇒ collision (aside from brem/beamstrahlung losses)
- beam energy known
- clean collision environment
- low (electroweak) background levels
- adjustable beam energy (threshold scans)
- e^- and possibly e^+ beam polarization
- ★ ILC will be *ideal* machine to perform precision spectroscopy of any new (EW interacting) matter states (provided they are kinematically accessible)!
- ★ timeline: decision-2012; ready-2025?

Precision sparticle measurements at a e^+e^- linear collider

Direct detection of SUSY DM

★ Direct search via neutralino-nucleon scattering

Direct detection of neutralino DM: the race is on!

Indirect detection (ID) of SUSY DM: *v*-telescopes

- $\star \tilde{Z}_1 \tilde{Z}_1 \rightarrow b\bar{b}, etc.$ in core of sun (or earth): $\Rightarrow \nu_\mu \rightarrow \mu$ in ν telescopes
 - Amanda, Icecube, Antares

ID of SUSY DM: γ and anti-matter searches

- $\tilde{Z}_1\tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \gamma$ in galactic core or halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow e^+$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{p}$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{D}$ in galactic halo

Direct and indirect detection of neutralino DM

HB, Belyaev, Krupovnickas, O'Farrill: JCAP 0408, 005 (2004)

Impact of DM direct/indirect detection on LHC program

- Extend reach in $\sigma_{SI} \sim 10^{-9} 10^{-10}$ pb
 - explore thoroughly region of MHDM, possibly MWDM
- after discovery, extract m_{wimp} ?
 - $-\ m_{\widetilde{Z}_1}$ sets absolute mass scale for SUSY particles-
 - combine with LHC mass edges to gain LHC absolute sparticle masses
 - learn if \widetilde{Z}_1 is absolutely stable: *R*-conservation
- IceCube turn-on can discover/verify especially MHDM
- knowledge of LHC spectra, σ_{SI} , σ_{SD} combined with possible gamma ray signals may allow map of dark matter distribution in the galaxy
- role of \bar{p} , e^+ , \bar{D} signals

Models beyond mSUGRA

- ★ Normal scalar mass hierarchy
 - split scalar generations $m_0(1) \simeq m_0(2) \ll m_0(3)$
 - resolves $BF(b \rightarrow s\gamma)$ and $(g-2)_{\mu}$
- ★ Non-universal Higgs scalars
 - motivated by SO(10) and $SU(5)\ {\rm SUSY}\ {\rm GUTs}$
 - allow A-funnel at low $\tan\beta$; higgsino DM at low m_0
 - enhanced DD/ ID rates
- **\star** DM in models with $t b \tau$ Yukawa unification (SO(10))
- ★ Mixed wino DM
- ★ Bino-wino co-annihilation (BWCA) DM
- **\star** Low M_3 mixed higgsino DM
- ★ KKLT mixed moduli/AMSB DM

Conclusions

- ★ Supersymmetry is very compelling BSM theory
- ★ Irrefragable case for CDM has emerged
- ★ Some reach for SUSY at Tevatron
- ★ Huge reach for SUSY at CERN LHC
- **\star** Possible early SUSY discovery at LHC: leptons instead of $\not\!\!E_T$
- \star e^+e^- LC necessary for precision sparticle spectroscopy
- ★ Direct search for WIMP/axion DM is underway
- **\star** Indirect search for WIMP DM via Icecube ν telescope
- ★ Indirect search via γ , \bar{p} , e^+ , \bar{D} detection from galactic core/halo WIMP annihilations
- **\star** Solution of mystery of CDM is near if CDM =lightest SUSY particle!